CG methylated microarrays identify novel methylated sequence bound by the CEBPB|ATF4 heterodimer that are active in vivo
Ontology highlight
ABSTRACT: To evaluate the effect of CG methylation on DNA binding of sequence-specific B-ZIP transcription factors (TFs) in a high-throughput manner, we enzymatically methylated the cytosine in the CG dinucleotide on protein binding microarrays. Using this novel technology, we show that CG methylation enhanced binding for CEBPA and CEBPB and inhibited binding for CREB, ATF4, JUN, JUND, CEBPD and CEBPG. The CEBPB|ATF4 heterodimer bound a novel motif CGAT|GCAA 10-fold better when methylated. EMSA confirmed these results. CEBPB ChIP-seq data using primary female mouse dermal fibroblasts with 50X methylome coverage for each strand indicate that the methylated sequences well-bound on the arrays are also bound in vivo. CEBPB bound 39% of the methylated canonical 10-mers ATTGC|GCAAT in the mouse genome. After ATF4 protein induction by thapsigargin which results in ER stress, CEBPB binds methylated CGAT|GCAA in vivo, recapitulating what was observed on the arrays. mRNA-seq of primary female mouse dermal fibroblasts with and without thapsigargin identified differentially expressed genes. Genes that are commonly bound by CEBPB and ATF4 to TGAT|GCAA (the best-bound 8-mer in the array) at the promoters were highly expressed and up-regulated or remained unchanged in the thapsigargin treated primary female mouse dermal fibroblasts.
ORGANISM(S): Mus musculus
PROVIDER: GSE44942 | GEO | 2013/03/08
SECONDARY ACCESSION(S): PRJNA192600
REPOSITORIES: GEO
ACCESS DATA