The transcriptional response of Cryptococcus neoformans to ingestion by Acanthamoeba castellanii and murine macrophages
Ontology highlight
ABSTRACT: Virulence of Cryptococcus neoformans for mammals was proposed to emerge from evolutionary pressures on its natural environment by protozoan predators, which selected for strategies that allow survival within macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then replicate intracellularly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least two-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes common to both groups, we focused on the ORF CNAG_05662, which was potentially related to sugar transport. We constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (Polyol Transporter Protein 1), is involved in the transport of 5- and 6-carbon polyols but its absence had no effect on virulence. Overall, our results are consistent with the hypothesis that mammalian virulence originated from fungal-protozoal interactions and provide a better understanding of how C. neoformans adapts to the mammalian host.
Project description:Virulence of Cryptococcus neoformans for mammals was proposed to emerge from evolutionary pressures on its natural environment by protozoan predators, which selected for strategies that allow survival within macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then replicate intracellularly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least two-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes common to both groups, we focused on the ORF CNAG_05662, which was potentially related to sugar transport. We constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (Polyol Transporter Protein 1), is involved in the transport of 5- and 6-carbon polyols but its absence had no effect on virulence. Overall, our results are consistent with the hypothesis that mammalian virulence originated from fungal-protozoal interactions and provide a better understanding of how C. neoformans adapts to the mammalian host. Four conditions, pairwise-compared: cells in vegetative growth at 28C versus cells within amoebae at 28C; and cells in vegetative growth at 37C/5% CO2 versus cells within macrophages at 37C/5% CO2. Three biological replicates for each condition. One replicate per array.
Project description:Cryptococcus neoformans is a human fungal pathogen found ubiquitously within the environment and associated with infection of primarily immunocompromised individuals. Without the activation of an effective immune response, the pathogen can survive, proliferate, and disseminate throughout the host through the action of diverse virulence factors. These virulence factors include a polysaccharide capsule to protect the fungus from phagocytosis by macrophages, melanin production to neutralize reactive oxygen species, thermotolerance to survive at human physiological temperatures, and extracellular enzymes for host tissue degradation and invasion. We previously used mass spectrometry-based proteomics to explore the production of fungal virulence factors during infection using in vitro (macrophages) and in vivo (murine) models of disease. Based on our studies, we investigated the proteome response of C. neoformans upon disruption of CipC, a virulence-associated fungal protein.
Project description:Invasive fungal pathogens are major causes of human mortality and morbidity1,2. While numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major AIDS pathogen, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify Cpl1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection. We observed that Cpl1-enhanced macrophage polarization requires Toll-like receptor 4, best known as a receptor for bacterial endotoxin, but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is due to Cpl1 itself and not contamination by lipopolysaccharide. Cpl1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signaling for its impact on infectivity. Strikingly, C. neoformans selectively associates with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a novel circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in pathogenesis of infectious disease.
Project description:The “Amoeboid Predator-Fungal Animal Virulence Hypothesis” posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungalpathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor BZP4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.
Project description:Iron overload is known to exacerbate many infectious diseases and, conversely, iron withholding is an important defense strategy for mammalian hosts. The mechanisms by which fungal pathogens sense iron in the mammalian host environment are poorly understood. The AIDS-associated pathogen Cryptococcus neoformans provides a unique opportunity to explore iron sensing in the context of infection because iron levels control elaboration of the polysaccharide capsule that is the major virulence factor of the fungus. Additionally, excess iron exacerbates experimental cryptococcosis. We identified the iron-responsive transcription factor Cir1 that regulates iron acquisition in C. neoformans and discovered that Cir1 also controls the expression of all of the known major virulence factors of the fungus. In particular, cir1 mutants are defective in capsule formation and avirulent in a mouse model of cryptococcosis. Thus the ability to sense iron is critical during infection by C. neoformans and may represent a target for antifungal therapy. Keywords: wt/mutant x low/high iron
Project description:Rho-GDP dissociation inhibitors (RDI) are repressors of Rho-type monomeric GTPases that allow for precise control of their target processes, e.g. cytoskeletal arrangement, vesicle trafficking, and polarized growth. In the human pathogenic yeast Cryptococcus neoformans, maintenance of normal cell morphology is vital for pathogenicity. We identified and deleted the gene encoding an RDI homolog in the human fungal pathogen Cryptococcus neoformans and investigated its impact on pathogenicity in animal models of cryptococcosis. Rdi1 deletion resulted in altered vacuole size in tissue culture medium, with corresponding alterations in expression of vesicle trafficking related genes. The rdi1∆ mutant strain showed reduced intracellular survival in macrophages, and severe attenuation of virulence in murine models of cryptococcosis. This reduction in virulence of the rdi1 mutant occurs in the absence of major defects in growth, morphology, or classical virulence-associated phenotypes. Keywords: mutant response, macrophage co-culture
Project description:The interaction of Cryptococcus neoformans with phagocytic cells of the innate immune system is a key step in disseminated disease leading to meningoencephalitis in immunocompromised individuals. Transcriptional profiling of cryptococcal cells harvested from cell culture medium or from macrophages found differential expression of metabolic and other functions during fungal adaptation to the intracellular environment by SAGE analysis. We focused on the ACL1 gene for ATP-citrate lyase, which converts citrate to acetyl-CoA, because this gene showed elevated transcript levels in macrophages and because of the importance of acetyl-CoA as a central metabolite. Mutants lacking ACL1 showed delayed growth on medium containing glucose, reduced cellular levels of acetyl-CoA, defective production of virulence factors, increased susceptibility to the antifungal drug fluconazole and decreased survival within macrophages. Importantly, acl1 mutants were unabl e to cause disease in a murine inhalation model, a phenotype that was more extreme than other mutants with defects in acetyl-CoA production (e.g., an acetyl-CoA synthetase mutant). Loss of virulence is likely due to perturbation of critical physiological interconnections between virulence factor expression and metabolism in C. neoformans. Phylogenetic analysis and structural modeling of cryptococcal Acl1 identified three indels unique to fungal protein sequences; these differences may provide opportunities for the development of pathogen-specific inhibitors. SAGE analysis of C. neoformans cells isolated from macrophages The murine macrophage-like cell line J774A.1 was maintained at 37°C in 10% CO2 in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum (FBS), 1% nonessential amino acids, 100 µg mL-1 penicillin-streptomycin, and 4 mM L-glutamine (Invitrogen). Cryptococcus cells were opsonized with monoclonal antibody 18B7 against capsule (1 µg mL-1), and macrophages were treated with recombinant mouse gamma interferon (IFN-gamma) (50 U mL-1) and lipopolysaccharide (LPS) (0.3 µg mL-1) prior to co-incubation at a multiplicity of infection (MOI) of 1:1. Macrophages were inoculated with H99 cells and washed after 1 h of inoculation to remove unattached, extracellular fungal cells. After 6 h of incubation, sterile, ice-cold distilled H2O was applied to each well to lyse the macrophages, and the fungal cells (4 x 107) were harvested by centrifugation. H99 control cells were prepared by growth under the same condition but without macrophages, and 108 cell s were harvested.
Project description:Cryptococcus neoformans interactions with murine macrophages are critical for disease. In this project we analyzed fungal proteins which were co-purified with murine host proteins after interaction. H99 C. neoformans was opsonized with mAb 18B7 and addedd to murine macrophages. Then murine cells were lysed and cell extracts submitted to proteomics.
Project description:Cryptococcus neoformans is a fungal pathogen responsible for hundreds of thousands of deaths per year. Its critical virulence factor is a polysacharride capsule which grows large upon entry into a mammalian host. We previously identified USV101 as a transcription factor whose deletion results in enlarged capsules. Here, we characterize strains lacking or overexpressing USV101 in terms of their virulence-related phenotypes, the altered course of infection by them and immune response to them in a mouse model, the relationship of Usv101 to other transcription factors involved in capsule regulation, and the changes in Usv101 activity during capsule induction.
Project description:The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. A global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.