Expression data from citrus fruit (Citrus sinensis L. Osbeck)
Ontology highlight
ABSTRACT: An antifungal aroma substance, 2-phenylethanol (PEA), was isolated from antagonistic yeast strain Kloeckera apiculata extract. Microarry were used to analyse its role citrus. We used microarrays to detail the global programme of gene expression underlying Citrus were treated with 1.0x108 cells/ml K. apiculata (KA), PEA (0.15%), the extract (1000xdilute) and control (CK) for 24 h,
Project description:An antifungal aroma substance, 2-phenylethanol (PEA), was isolated from antagonistic yeast strain Kloeckera apiculata extract. Microarry were used to analyse its role citrus. We used microarrays to detail the global programme of gene expression underlying Citrus were treated with 1.0x108 cells/ml K. apiculata (KA), PEA (0.15%), the extract (1000xdilute) and control (CK) for 24 h, An antifungal aroma substance, 2-phenylethanol, was isolated from antagonistic yeast strain Kloeckera apiculata. To analyse its role in Citrus response,Citrus were treated with K. apiculata , 2-phenylethano (0.15%), the extract (1000xdilute) and control (CK) for 24 h, respectively. The fresh epicarp of citrus was separated by knife and directly frozen in liquid nitrogen for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Bud mutations arise often in citrus. The selection of mutants is one of the most important breeding methods in citrus. However, the molecular bases of bud mutation have rarely been studied. To identify the potential important or novel genes involved in bud mutation, different transcriptomic techniques combing suppression subtractive hybridization (SSH) and microarray were performed between a lycopene accumulated mutant, ‘Hong Anliu’ sweet orange (Citrus sinensis L. Osbeck), and its wild-type during fruit maturation. Microarray analysis revealed that differentially expressed clones are extensively coordinated with the initiation of lycopene accumulation. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained, 182 (68.2%) of which share homology (E-value ≤ 1×10-10) with known gene products or known protein domains. A list of candidate genes which involved in cellular metabolic process, primary metabolic process, localization, macromolecular metabolic process was obtained. Out of these genes, 12 share homology with previously described signal transduction or transcription factors, suggesting complex regulatory control. These results demonstrate profound effect on gene expression of bud mutation in citrus fruits and provide new insights into the molecular basis of bud mutation. Keywords: bud mutation, candidate genes, Citrus, cNDA microarray, suppression subtractive hybridization (SSH)
Project description:Bud mutations arise often in citrus. The selection of mutants is one of the most important breeding methods in citrus. However, the molecular bases of bud mutation have rarely been studied. To identify the potential important or novel genes involved in bud mutation, different transcriptomic techniques combing suppression subtractive hybridization (SSH) and microarray were performed between a lycopene accumulated mutant, âHong Anliuâ sweet orange (Citrus sinensis L. Osbeck), and its wild-type during fruit maturation. Microarray analysis revealed that differentially expressed clones are extensively coordinated with the initiation of lycopene accumulation. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained, 182 (68.2%) of which share homology (E-value ⤠1Ã10-10) with known gene products or known protein domains. A list of candidate genes which involved in cellular metabolic process, primary metabolic process, localization, macromolecular metabolic process was obtained. Out of these genes, 12 share homology with previously described signal transduction or transcription factors, suggesting complex regulatory control. These results demonstrate profound effect on gene expression of bud mutation in citrus fruits and provide new insights into the molecular basis of bud mutation. Keywords: bud mutation, candidate genes, Citrus, cNDA microarray, suppression subtractive hybridization (SSH) Fruits from the mutant and its wild type were collected at five time points from August to December. Total RNA extracted from the mutant was hybridized to the array together with RNA from the wild type. Each hybridization was performed in duplicate by dye swap.
Project description:Pathogens can trigger a broad array of changes in gene expression in plants. In this study we report the changes in gene expression patterns that occurred when greenhouse grown Washington Navel oranges (C. sinensis) was graft innoculated with citrus pathogens. Candidatus Liberibacter asiaticus, Spiroplasma citri, and two isolates of citrus tristeza virus were studied.
Project description:Huanglongbing (HLB) (=citrus greening) is a destructive disease of citrus which is caused by a fastidious, phloem-inhabiting bacterium of the genus Candidatus Liberibacter. Large-scale analysis of gene expression changes in ‘Valencia’ orange leaves were studied during the course of 19 weeks after inoculation with Ca. L. asiaticus using the Affymetrix GeneChip® citrus genome array to provide new insights into the molecular basis of citrus response to this pathogen. Of the more than 33,000 probe sets on the microarray 21,067 were expressed in the leaves, of which 279 and 515 were differentially expressed (FDR ≤ 0.05) five to nine and 13-17 weeks after inoculation, respectively. Results from semi-quantitative RT-PCR analysis performed on 14 selected genes were highly correlated with those observed with the microarray. Gene expression changes involved a variety of different processes including cell defense, transport, cellular organization, photosynthesis, and carbohydrate metabolism. Notable was the pathogen-induced accumulation of transcripts for a phloem-specific lectin PP2-like protein. Transcriptional changes and their relation to disease symptom development are discussed. This is the first study of transcriptional profiling in citrus in response to liberibacter infection using microarray technology. Huanglongbing (HLB) is a destructive disease of citrus which is suspected to be caused by a phloem-inhabiting bacterium of the genus Candidatus Liberibacter. Large-scale analysis of gene expression changes in ‘Valencia’ orange (C. sinensis) leaves were studied during the course of 19 weeks after inoculation with Ca. L. asiaticus (Las), the pathogen associated with HLB in Florida, using the Affymetrix GeneChip® citrus genome array to provide new insights into the molecular basis of citrus response to this pathogen.
Project description:Huanglongbing (HLB) (=citrus greening) is a destructive disease of citrus which is caused by a fastidious, phloem-inhabiting bacterium of the genus Candidatus Liberibacter. Large-scale analysis of gene expression changes in ‘Valencia’ orange leaves were studied during the course of 19 weeks after inoculation with Ca. L. asiaticus using the Affymetrix GeneChip® citrus genome array to provide new insights into the molecular basis of citrus response to this pathogen. Of the more than 33,000 probe sets on the microarray 21,067 were expressed in the leaves, of which 279 and 515 were differentially expressed (FDR ≤ 0.05) five to nine and 13-17 weeks after inoculation, respectively. Results from semi-quantitative RT-PCR analysis performed on 14 selected genes were highly correlated with those observed with the microarray. Gene expression changes involved a variety of different processes including cell defense, transport, cellular organization, photosynthesis, and carbohydrate metabolism. Notable was the pathogen-induced accumulation of transcripts for a phloem-specific lectin PP2-like protein. Transcriptional changes and their relation to disease symptom development are discussed. This is the first study of transcriptional profiling in citrus in response to liberibacter infection using microarray technology. Huanglongbing (HLB) is a destructive disease of citrus which is suspected to be caused by a phloem-inhabiting bacterium of the genus Candidatus Liberibacter. Large-scale analysis of gene expression changes in ‘Valencia’ orange (C. sinensis) leaves were studied during the course of 19 weeks after inoculation with Ca. L. asiaticus (Las), the pathogen associated with HLB in Florida, using the Affymetrix GeneChip® citrus genome array to provide new insights into the molecular basis of citrus response to this pathogen. Three year-old 'Valencia' orange (C. sinensis) scions on Cleopatra mandarin (C. reticulata Blanco) rootstocks were graft-inoculated with non-infected (control) or Las-infected tissue from greenhouse- (control) or field-grown 'Lisbon' lemon (C. limon) trees. Fully expanded leaves were collected at 5, 9, 13, and 17 weeks after inoculation (wai). Total RNA was extracted from two control plants and from three Las-inoculated plants per time point. Equal amounts of RNA were combined from samples collected 5 wai and 9 wai and from samples collected 13 wai and 17 wai, resulting in two non-infected and three infected biological replicates for both early (5-9 wai) and late (13-17 wai) time points and used for hybridization on Affymetrix citrus microarrays.
Project description:Huanglongbing (HLB or Citrus Greening Disease) is a destructive citrus disease that has impacted the Florida citrus industry as well as global citrus industry for many years. There is yet to be a practical cure for HLB. Insecticide use targeting the psyllid vector and the burning, destruction and removal of all infected plants are the best solutions as of now. However, this is only a temporary and costly fix. The damage caused by HLB itself, the destruction of infected trees, and indirect effects in other economic sectors costs the Florida economy approximately $900 million per year. There are also problems with insecticide use; the high dosage needed the adequately suppress the transmission of the disease would contaminate the environment, rendering this solution unsustainable. Alternative solutions are needed. In the hopes of uncovering an alternative solution, we investigated the protein and phosphoprotein differences between healthy and diseased citrus plants to identify potential biomarkers essential towards fighting HLB within the trees themselves. For our experimental procedure, we grinded 2 grams of fresh leaf weight from the species Citrus sinensis (sweet orange). Phenol extraction was used to extract the proteins from four biological replicates of the control (healthy) leaves and four biological replicates of the treatment (diseased) leaves. Utilizing a Bradford assay and a 1-D gel electrophoresis, we evaluated the quality and quantity of the samples. Equal amounts of protein from the eight samples were digested with trypsin for 16 hours. Afterwards, we split each sample into two groups: one for phospho-enrichment and the other for total analysis. Phosphopeptides were enriched with the NuTip enrichment procedure for analysis of the phosphopeptides. Total peptides were cleaned up using ZipTip solid phase extraction. We ran the phosphopeptides and total peptides on an LC-MS/MS system, and the raw data files were processed with the Proteome Discoverer software using the citrus database downloaded from NCBI.
Project description:Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium Candidatus Liberibacter spp. In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 30,171 sets expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories.
Project description:BackgroundIn citrus the transition from juvenility to mature phase is marked by the capability of a tree to flower and fruit consistently. The long period of juvenility in citrus severely impedes the use of genetic based strategies to improve fruit quality, disease resistance, and responses to abiotic environmental factors. One of the genes whose expression signals flower development in many plant species is FLOWERING LOCUS T (FT).ResultsIn this study, gene expression levels of flowering genes CiFT1, CiFT2 and CiFT3 were determined using reverse-transcription quantitative real-time PCR in citrus trees over a 1 year period in Florida. Distinct genotypes of citrus trees of different ages were used. In mature trees of pummelo (Citrus grandis Osbeck) and 'Pineapple' sweet orange (Citrus sinensis (L.) Osbeck) the expression of all three CiFT genes was coordinated and significantly higher in April, after flowering was over, regardless of whether they were in the greenhouse or in the field. Interestingly, immature 'Pineapple' seedlings showed significantly high levels of CiFT3 expression in April and June, while CiFT1 and CiFT2 were highest in June, and hence their expression induction was not simultaneous as in mature plants.ConclusionsIn mature citrus trees the induction of CiFTs expression in leaves occurs at the end of spring and after flowering has taken place suggesting it is not associated with dormancy interruption and further flower bud development but is probably involved with shoot apex differentiation and flower bud determination. CiFTs were also seasonally induced in immature seedlings, indicating that additional factors must be suppressing flowering induction and their expression has other functions.