Allele special primer extension microarray for test 12 SNPs contributed to NSCL/P in northeast China.
Ontology highlight
ABSTRACT: Nonsyndromic cleft lip with or without palate (NSCL/P) are common birth defects of complex etiology. Multiple interacting loci with possible additional environment factors influence the risk for NSCL/P. 12 single nucleotide polymorphisms (SNPs) in 7 candidate genes were tested using an allele-specific primer extension for both case-control and case-parents analyses in northeast China (236 unrelated patients, 185 mothers and 154 fathers, including 128 complete trios, 400 control individuals). TGFA and IRF6 genes showed a significant associations with NSCL/P. For IRF6, statistical evidence of association between rs2235371 (P=0.003), rs2013162 (P=0.000) and NSCL/P was found in case-control analyses. The Family Based Association Tests (FBAT) showed an over-transmission for C allele of rs2235371 polymorphic (p=0.007). For TGFA, associations between rs3771494, rs3771523 (G3822A), rs11466285 (T3851C) and NSCL/P could be observed both in case-control and FBAT analyses. However, we found no associations between other genes (BCL3, TGFB3, MTHFR1, PVRL1 and SUMO1) and NSCL/P.
Project description:Nonsyndromic cleft lip with or without palate (NSCL/P) are common birth defects of complex etiology. Multiple interacting loci with possible additional environment factors influence the risk for NSCL/P. 12 single nucleotide polymorphisms (SNPs) in 7 candidate genes were tested using an allele-specific primer extension for both case-control and case-parents analyses in northeast China (236 unrelated patients, 185 mothers and 154 fathers, including 128 complete trios, 400 control individuals). TGFA and IRF6 genes showed a significant associations with NSCL/P. For IRF6, statistical evidence of association between rs2235371 (P=0.003), rs2013162 (P=0.000) and NSCL/P was found in case-control analyses. The Family Based Association Tests (FBAT) showed an over-transmission for C allele of rs2235371 polymorphic (p=0.007). For TGFA, associations between rs3771494, rs3771523 (G3822A), rs11466285 (T3851C) and NSCL/P could be observed both in case-control and FBAT analyses. However, we found no associations between other genes (BCL3, TGFB3, MTHFR1, PVRL1 and SUMO1) and NSCL/P. In the study present, 236 unrelated patient with NSCL/P addition with 185 mothers and 154 fathers and 400 control individuals were tested with the allele special primer extension microarray.
Project description:<p>Nonsyndromic cleft lip and palate (NSCL/P) is a complex disorder caused by both genetic and environmental factors and has been the focus of an extensive effort to identify genetic risk factors. A number of candidate gene studies have been performed but have not been widely replicated. To date, four independent genome wide association studies have been performed as well as a meta-analysis. Together these studies have identified many loci associated with NSCL/P. The goal of this project is to use targeted sequencing to further characterize these regions and to progress from the association signals identified by GWAS to the identification of causative genes and/or variants.</p> <p>This study is part of the GWASeq project, a collaboration of five disease studies, which will sequence genomic regions from GWAS to characterize the genetic variation underlying these diseases and to compare study design and methods for the follow-up of GWAS studies by sequencing.</p> <p>The goal of this study is to sequence 1000+ NSCL/P case-parent trios from China and the Philippines and 400 trios of European ancestry. Targeted sequencing was performed on intervals ranging between 60kb to 1Mb surrounding 13 genes/loci previously associated with NSCL/P including: IRF6, MAFB, ARHGAP29, 8q24, PAX7, VAX1, NTN1, NOG, FOXE1, MSX1, BMP4, FGFR2, PTCH1.</p>
Project description:The etiology and pathogenesis of non-syndromic cleft lip and palate (NSCL/P) are largely unknown. Long non-coding RNAs (lncRNA) are thought to play important roles in NSCL/P, but reports on the underlying processes are currently unavailable. Our study focused on children diagnosed with NSCL/P alone. Based on the morphology, patients were categorized as either cleft lip with or without cleft palate (CL/P) or cleft palate-only (CPO). When patients received surgery for NSCL/P, tissue excised from the trimmed wound edge was reserved to serve as experimental samples; adjacent normal tissue was used as a positive control. Target lncRNAs in the collected tissues were identified using microarray and quantitative reverse transcription PCR (RT-qPCR). Immunohistochemical (IHC) staining and RT-qPCR were used to verify the target mRNAs. Pathway, gene ontology (GO) enrichment, and TargetScan prediction were employed to construct endogenous RNA networks (ceRNA networks) and explore their potential functions. RNA-Seq analysis revealed 24 upregulated and 43 downregulated lncRNAs in the CL/P and CPO groups compared with those in the control group; of these, MALAT1and NEAT1 were screened and validated using RT-qPCR. Common NSCL/P risk factors positively correlated with MALAT1 and NEAT1 expression (ORMALAT1 = 28.111, 95% CI: 4.054-194.923; ORNEAT1 = 30.556, 95% CI: 4.422-211.142; P < 0.05). Bioinformatics predicted four ceRNA networks: MALAT1-hsa-miR-1224-3p-SP1, MALAT1-hsa-miR-6734-5p/hsa-miR-1224-3p-WNT10A, NEAT1-hsa-miR-140-3p.1-CXCR4, and NEAT1-hsa-miR-3129-5p/hsa-miR-199a-3p/hsa-miR-199b-3p-ZEB1. GO enrichment focused on the potential functions of ceRNA networks, including biosynthesis of organic cyclic compounds, formation of membrane-enclosed and organelle lumens, and Wnt-protein binding. The results of RT-qPCR were consistent with those of IHC staining with regard to expression of related mRNAs. MALAT1 and NEAT1, which are upregulated in NSCL/P, are associated with the severity of NSCL/P. This study provides a new insight into NSCL/P pathogenesis and suggests that MALAT1 and NEAT1 act as potential therapeutic targets and prognostic biomarkers for NSCL/P.
Project description:Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88x10-2 M-bM-^@M-^S 5.02x10-9). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 involved in DNA repair are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show that cellular defences against DNA damage may take part in the pathogenesis of NSCL/P, in accordance with the hypothesis of aetiological overlap between this malformation and cancer. These results provide more information regarding the aetiology of NSCL/P and have the potential tocan potentially assist incontribute to the development of future preventive strategies. In order to analyze differences in gene expression between NSCL/P samples and controls we used 7 NSCL/P RNA samples extracted from dental pulp stem cells cultures and 6 control RNA samples also from dental pulp stem cells cultures, all in the same culture conditions. RNA samples were used in gene expression microarrays (Affymetrix HuGene 1.0 st chips).
Project description:Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88x10-2 – 5.02x10-9). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 involved in DNA repair are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show that cellular defences against DNA damage may take part in the pathogenesis of NSCL/P, in accordance with the hypothesis of aetiological overlap between this malformation and cancer. These results provide more information regarding the aetiology of NSCL/P and have the potential tocan potentially assist incontribute to the development of future preventive strategies.
Project description:The integrity of the mammalian epidermis is essential for organism survival, and it depends on a balance of proliferation and differentiation in the resident stem cell population. The kinase Ripk4 and the transcription factor Irf6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft tissue fusions, resulting in neonatal lethality. However, the mechanism by which these genes control epidermal differentiation in vivo is unknown. By generating various mouse knock-out and knock-in strains we demonstrate that in vivo the role of Ripk4 in development is dependent on its kinase activity, Ripk4 and Irf6 function cell autonomously in the epidermis,Ripk4 and Irf6 lie on a linear pathway and phosphorylation of Irf6 on Serine413 and Serine424 is essential to prime it for activation. This priming then allows Ripk4 to phosphorylate Irf6 on Serine90, which ensures Irf6 activation. We then use RNA-seq, ChIP-seq and ATAC-seq analysis to define the global transcriptional targets of Irf6 in epidermal differentiation. Collectively, our results explain how Ripk4 activates Irf6, and how this pathway ensures epidermal differentiation and a functional barrier. This is crucial for understanding the etiology of developmental syndromes that are characterized by orofacial, skin and genital abnormalities.
Project description:The integrity of the mammalian epidermis is essential for organism survival, and it depends on a balance of proliferation and differentiation in the resident stem cell population. The kinase Ripk4 and the transcription factor Irf6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft tissue fusions, resulting in neonatal lethality. However, the mechanism by which these genes control epidermal differentiation in vivo is unknown. By generating various mouse knock-out and knock-in strains we demonstrate that in vivo the role of Ripk4 in development is dependent on its kinase activity, Ripk4 and Irf6 function cell autonomously in the epidermis,Ripk4 and Irf6 lie on a linear pathway and phosphorylation of Irf6 on Serine413 and Serine424 is essential to prime it for activation. This priming then allows Ripk4 to phosphorylate Irf6 on Serine90, which ensures Irf6 activation. We then use RNA-seq, ChIP-seq and ATAC-seq analysis to define the global transcriptional targets of Irf6 in epidermal differentiation. Collectively, our results explain how Ripk4 activates Irf6, and how this pathway ensures epidermal differentiation and a functional barrier. This is crucial for understanding the etiology of developmental syndromes that are characterized by orofacial, skin and genital abnormalities.
Project description:The integrity of the mammalian epidermis is essential for organism survival, and it depends on a balance of proliferation and differentiation in the resident stem cell population. The kinase Ripk4 and the transcription factor Irf6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft tissue fusions, resulting in neonatal lethality. However, the mechanism by which these genes control epidermal differentiation in vivo is unknown. By generating various mouse knock-out and knock-in strains we demonstrate that in vivo the role of Ripk4 in development is dependent on its kinase activity, Ripk4 and Irf6 function cell autonomously in the epidermis,Ripk4 and Irf6 lie on a linear pathway and phosphorylation of Irf6 on Serine413 and Serine424 is essential to prime it for activation. This priming then allows Ripk4 to phosphorylate Irf6 on Serine90, which ensures Irf6 activation. We then use RNA-seq, ChIP-seq and ATAC-seq analysis to define the global transcriptional targets of Irf6 in epidermal differentiation. Collectively, our results explain how Ripk4 activates Irf6, and how this pathway ensures epidermal differentiation and a functional barrier. This is crucial for understanding the etiology of developmental syndromes that are characterized by orofacial, skin and genital abnormalities.
Project description:The integrity of the mammalian epidermis is essential for organism survival, and it depends on a balance of proliferation and differentiation in the resident stem cell population. The kinase Ripk4 and the transcription factor Irf6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft tissue fusions, resulting in neonatal lethality. However, the mechanism by which these genes control epidermal differentiation in vivo is unknown. By generating various mouse knock-out and knock-in strains we demonstrate that in vivo the role of Ripk4 in development is dependent on its kinase activity, Ripk4 and Irf6 function cell autonomously in the epidermis,Ripk4 and Irf6 lie on a linear pathway and phosphorylation of Irf6 on Serine413 and Serine424 is essential to prime it for activation. This priming then allows Ripk4 to phosphorylate Irf6 on Serine90, which ensures Irf6 activation. We then use RNA-seq, ChIP-seq and ATAC-seq analysis to define the global transcriptional targets of Irf6 in epidermal differentiation. Collectively, our results explain how Ripk4 activates Irf6, and how this pathway ensures epidermal differentiation and a functional barrier. This is crucial for understanding the etiology of developmental syndromes that are characterized by orofacial, skin and genital abnormalities.
Project description:Transcription factor paralogs may share a common role (e.g. Hox) in staged or overlapping expression in specific tissues. In other examples, members have distinct roles in a range of embryologic, differentiation or response pathways (e.g. Tbx, Pax). For the Interferon Regulatory Factor (IRF) family of transcription factors, mice deficient in Irf1, Irf2, Irf3, Irf4, Irf5, Irf7, Irf8 or Irf9, have defects in the immune response but display no embryologic abnormalities. Mice deficient for Irf6 have not been reported, but in humans, mutations in IRF6 cause two Mendelian orofacial clefting syndrome, and genetic variation in IRF6 confers risk for isolated cleft lip and palate. Mice deficient for Irf6 have abnormal skin, limb and craniofacial development. Histological and gene expression analyses indicate that the primary defect is in keratinocyte differentiation and proliferation. This study describes a novel role for an IRF family member in epidermal development. Experiment Overall Design: Skin from E17.5 mice was removed and flash frozen for RNA extraction and hybridization on Affymetrix microarrays.