The conserved DNA-binding protein WhiA is involved in cell division in Bacillus subtilis
Ontology highlight
ABSTRACT: One of the first steps in bacterial cell division is the polymerization of the tubulin-like protein FtsZ at midcell. The dynamics of FtsZ polymerization is regulated by a set of proteins among which ZapA. A zapA mutation does not result in a clear phenotype in Bacillus subtilis. In this study we used a synthetic-lethal screen to find genes that become essential when ZapA is absent. Three transposon insertions were found in yvcL. Deletion of yvcL in a wild type background had only a mild effect on growth, but a yvcL zapA double mutant is very filamentous and sick. This filamentation is caused by a strong reduction in FtsZ polymerization, suggesting that YvcL is involved in an early stage of cell division. YvcL is 25 % identical and 50 % similar to the Streptomyces coelicolor transcription factor WhiA. WhiA is required for septation of aerial hyphae during sporulation. Using GFP fusions, we show that YvcL localizes at the nucleoid. Surprisingly, transcriptome analyses in combination with a ChIP on chip assay did not provide clear evidence that YvcL functions as a transcription factor. To gain more insight into the function of YvcL, we searched for suppressors of the filamentous phenotype of a ∆yvcL ∆zapA mutant. Transposon insertions in gtaB and pgcA restored normal cell division of the double mutant. The corresponding proteins have been implemented in the metabolic sensing of cell division. We conclude that YvcL (WhiA) is involved in cell division in B. subtilis through an as yet unknown mechanism.
ORGANISM(S): Bacillus subtilis
PROVIDER: GSE45824 | GEO | 2013/11/28
SECONDARY ACCESSION(S): PRJNA196524
REPOSITORIES: GEO
ACCESS DATA