Genome-wide binding of Yki in S2 cells
Ontology highlight
ABSTRACT: The Hippo pathway regulates metazoan growth, acting through the transcriptional co-activators Yorkie (in Drosophila) and Yap and Taz (in vertebrates). Much attention has been focused on upstream regulators of Yorkie and its homologues. In contrast, the mechanisms by which they actually promote transcription have remained poorly understood. Genome-wide chromatin binding experiments support extensive functional overlap between Yorkie and GAF. Chromatin binding identifies thousands of Yorkie sites, the majority of which are associated with elevated transcription, based on genome-wide analysis of mRNA and histone H3K4Me3 modification. Our studies establish a molecular basis for transcriptional activation by Yorkie and implicate it as a global regulator of transcriptional activity in Drosophila. This is a dataset generated by the Drosophila Regulatory Elements modENCODE Project led by Kevin P. White at the University of Chicago. This dataset was generated in collaboration with Ken Irvine at HHMI/Rutgers University and Richard S. Mann at Columbia University. It contains ChIP-seq data (Illumina) for multiple transcription factor antibodies in Drosophila embryos and larval wing imaginal discs.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE46305 | GEO | 2014/04/23
SECONDARY ACCESSION(S): PRJNA198712
REPOSITORIES: GEO
ACCESS DATA