Expression data from two year old shoot apex and mature xylem of Populus tomentosa
Ontology highlight
ABSTRACT: We take the two year old plant for sampling.Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa shoot apex and mature xylem. We used microarrays to detail the global programme of gene expression in shoot apex and mature xylem.
Project description:We take the two year old plant for sampling.Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa shoot apex and mature xylem. We used microarrays to detail the global programme of gene expression in shoot apex and mature xylem. Populus tomentosa shoot apex and mature xylem were taken for RNA extraction and hybridization on Affymetrix microarrays.CB2009304-C and CB2009304-D from shoot apex, CB2009304-G and CB2009304-H from mature xylem.
Project description:We take the two year old plant for sampling. Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa newly formed developing xylem and lignified xylem. We used microarrays to detail the global programme of gene expression in newly formed developing xylem and lignified xylem.
Project description:We take the two year old plant for sampling. Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa newly formed developing xylem and lignified xylem. We used microarrays to detail the global programme of gene expression in newly formed developing xylem and lignified xylem. Populus tomentosa newly formed developing xylem and lignified xylem were taken for RNA extraction and hybridization on Affymetrix microarrays. CB2009304-A and CB2009304-B from newly formed developing xylem, CB2009304-G and CB2009304-H from lignified xylem.
Project description:Here we applied a novel approach to isolate nuclei from complex plant tissues (https://doi.org/10.1371/journal.pone.0251149), to dissect the transcriptome profiling of the hybrid poplar (Populus tremula × alba) vegetative shoot apex at single-cell resolution.
Project description:The atmosphere CO2 concentration keeps increasing every year. Use the Affymetrix poplar gene chip to confirm the expression changes in key genes in the triploid white poplar due to the influence of elevated CO2 concentrations. We used microarrays to detail the global programme of gene expression under normal and elevated CO2 concentrations. Gene expression of triploid white poplar ((P. tomentosa Ã? P. bolleanaï¼?Ã? P. tomentosa) leaves were investigated by using the Affymetrix poplar genome gene chip, after grown in controlled environment chambers under three different CO2 concentrations. Poplar leaves were subjected to normal CO2 concentrations (T0) and elevated CO2 concentrations (T1, 550 ppm and T2, 720 ppm) treatments three months.
Project description:High-throughput sequencing was performed to build four sRNA libraries (each sample with two replications) derived from shoot tips and mature leaf tissues of P. tomentosa. Millions of small RNA (sRNA) reads were obtained, and many known and novel miRNAs in SAM and leaf libraries were established. Several miRNAs that were differentially expressed between the SAM and its surrounding tissues, and their targets involved in important biological processes were identified and analyzed. Our study provide insights for better understanding the regulatory mechanisms of miRNAs involved in the SAM of woody plants.
Project description:In order to further determine whether genes related to xylem development have changed at the protein level, we conducted proteomic analysis of stem xylem at different stages.
Project description:Downstream genes of PtVNS genes were explored with inducible expression system using glucocorticoid receptor (GR). Transgenic poplar plants expressing 35S:AtVND7-VP16-GR were treated with dexamethazone (DEX). A number of genes related to the formation of xylem vessels were induced by DEX.