Small RNA sequencing of human preovulatory cumulus and mural granulosa cells
Ontology highlight
ABSTRACT: The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. However, the post-transcriptional gene expression studies on miRNA level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization.
Project description:The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. However, the post-transcriptional gene expression studies on miRNA level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Libraries of all 6 samples were sequenced twice, generating 2 technical replicates for each sample. Differential gene expression study was performed on the pooled results of technical replicates.
Project description:The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. The current study determined the mRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization.
Project description:The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. The current study determined the mRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Differential gene expression study was performed. The identified gene expression profile was also used for predicting targets for miRNAs that were also identified from the same samples (GSE46489).
Project description:We are human embryologists from center for reproductive medicinel of Anhui Provincial Hospital Affiliated to Anhui Medical University, and we have the expertise to do all that properly in humans. By deep sequencing, the current experiment determined the miRNA profile of two intrafollicular somatic cell types: CRCs and COCs, isolated from women undergoing controlled ovarian stimulation and in vitro fertilization treatment. Ovarian follicles, which are a densely-packed shell of granulosa cells that contains an immature or mature oocyte, are above all responsible for the development, maturation, and release of mature egg for fertilization. They are also responsible for synthesizing and secreting hormones that are essential for follicular development, menstrual and estrous cycle, maintenance of the reproductive tracts and their functions, development of female secondary sex characteristics, and metabolism. During folliculogenesis, ovarian granulosa cells surrounding the oocyte differentiate into mural granulosa cells, involved in gonadal steroidogenesis, and into cumulus cells, which are ovulated with the oocyte at ovulation. These cumulus cells derive from the same population of early follicles, but differentiate into two distinct groups of cells: 1) Those directly lie on the zona pellucida are composed of the so called corona radiata cells.(CRCs) 2) The other group surrounds the CRCs and consists of more numerous cells, forming the so called cumulus oophorus cells (COCs). In the present study, we described the miRNA expression profile to characterize the ensemble of both known and novel miRNAs expressed in CRCs, as well as in COCs, by using high-throughput Solexa technology.
Project description:Communication between various ovarian cell types is a prerequisite for folliculogenesis and ovulation. In antral follicles granulosa cells divide into two distinct populations of mural (MGC) and cumulus granulosa cells (CGC), enveloping the antrum and surrounding the oocyte, respectively. IVF offers a good opportunity for analysing their functional properties since granulosa cells can be retrieved during the puncturing procedure of stimulated follicles. The aim of this study was to compare the transcriptomes of MGC and CGC in stimulated antral follicles obtained from 19 women undergoing IVF-ICSI procedure. MGC were obtained from follicular fluid and CGC were acquired after oocyte denudation for micromanipulation. Gene expression analysis was conducted using the genome-wide Affymetrix transcriptome array. The expression profile of the two granulosa cell populations varied significantly. Out of 28 869 analysed transcripts 4 480 were differentially expressed (q-value < 10-4) and 489 showed ≥ 2-fold difference in the expression level with 222 genes up-regulated in MGC and 267 in CGC. The transcriptome of MGC showed higher expression of genes involved in immune response, hematological system function and organismal injury, while CGC had genes involved in protein degradation and nervous system function up-regulated. Cell-to-cell signalling and interaction pathways were noted in both cell populations. Furthermore, numerous novel transcripts that have not been previously described in follicular physiology were identified. In conclusion, our results provide a solid basis for future studies in follicular biology that will help to identify molecular markers for oocyte and embryo viability in IVF.
Project description:This group consist of human embryologists from the reproductive medical center for of the 1st affiliated hospital of Anhui Medical University. Our research is specifically focused on women ovarian reserve and the relevant female infertility. By deep sequencing, the current experiment determined the small non-coding RNA profile of cumulus cells from patients with or without diminished ovarian reserve undergoing controlled ovarian stimulation and in vitro fertilization treatment. Ovarian follicles, which are a densely-packed shell of granulosa cells that contains an immature or mature oocyte, are above all responsible for the development, maturation, and release of mature egg for fertilization. They are also responsible for synthesizing and secreting hormones that are essential for follicular development, menstrual and estrous cycle, maintenance of the reproductive tracts and their functions, development of female secondary sex characteristics, and metabolism. During folliculogenesis, ovarian granulosa cells surrounding the oocyte differentiate into mural granulosa cells, involved in gonadal steroidogenesis, and into cumulus cells, which are ovulated with the oocyte at ovulation. In the present study, we described the small non-coding RNA expression profile to characterize the ensemble of both known and novel ncRNAs expressed in cumulus cells from patients with or without Diminished ovarian reserve, by using high-throughput Solexa technology.
Project description:Transcriptomes of mouse mural granulosa cells were sequenced to identify transcripts expressed in mural granulosa cells of ovaries. Moreover, transcriptomes of cumulus cells were compared between those of young (2 month-old) and old mice (10 month-old) to assess the effects of ageing on cumulus cells. In addition, transcriptomes of cumulus-oocyte complexes were compared between DBA/2 and (C57BL/6 x DBA/2)F1 mice to assess the strain differences.
Project description:To evaluate the mechanisms by which excessive FSH doses during ovarian stimulation are detrimental to ovarian follicle function and assisted reproduction outcomes, small ovarian reserve (SOR) heifers were subjected to ovarian stimulation with either a standard, 70 IU, or excessive, 210 IU, dose of commercial porcine FSH (cpFSH) preparation, per injection. The ovaries were recovered at the end of the ovarian stimulation protocol, consisting of eight cpFSH injections at 12 h intervals. In excessive dose treated heifers, heterogeneity was observed with regards to follicle phenotype including cumulus cell-oocyte complex (COC) morphology and intrafollicular steroid hormone milieu. In contrast, standard-dose treated heifers exhibited one predominant follicle phenotype which was selected as the control follicle type for all comparisons herein. RNA-seq analyses of granulosa, cumulus cells and the oocyte from individual follicles of these defined phenotypes was used to identify changes in the transcriptomes of these cell types in excessive dose treated individuals.
Project description:Follicular somatic cells (mural granulosa cells and cumulus cells) and the oocyte communicate through paracrine interactions and through direct gap junctions between oocyte and cumulus cells. Considering that mural and cumulus cells arise through a common developmental pathway and that their differentiation is essential to reproductive success, understanding how these cells differ is a key aspect to understanding their critical functions. Changes in global gene expression before and after an ovulatory stimulus were compared between cumulus and mural granulosa cells to test the hypothesis that mural and cumulus cells are highly differentiated at the time of an ovulatory stimulus and further differentiate during the periovulatory interval. The transcriptomes of the two cell types were markedly different (>1500 genes) before an ovulatory hCG bolus but converged after ovulation to become completely overlapping. The predominant transition was for the cumulus cells to become more like mural cells after hCG. This indicates that the differentiated phenotype of the cumulus cell is not stable and irreversibly established but may rather be an ongoing physiological response to the oocyte. We compared transcriptomes of mural granulosa cells isolated from the follicles before (PM-GC) and after (VVM-GC) an ovulatory stimulus. These data were analyzed with previously published cumulus cells data to compare transitions in granulosa cell state before and after an ovulatory stimulus with transitions in cumulus cells.
Project description:Background: The outbreak of coronavirus disease 2019 (COVID-19) poses a considerable health threat to humanity, with potential implications for the ovarian microenvironment remaining uncertain. Methods: Transcriptomic and proteomic analyses of ovarian granulosa cells, along with metabolomic and lipidomic profiling of follicular fluid, were conducted on 17 non-COVID-19 cases and 9 COVID-19 cases. This study received approval from the ethics committee (KYLL-2022-581). Generalized estimating equations model was performed to identify oocyte competency biomarkers. Additionally, cell proliferation, apoptosis, and altered pathways were examined following lentivirus transfection. Methods: Transcriptomic and proteomic analyses of ovarian granulosa cells, along with metabolomic and lipidomic profiling of follicular fluid, were conducted on 17 non-COVID-19 cases and 9 COVID-19 cases. This study received approval from the ethics committee (KYLL-2022-581). Generalized estimating equations model was performed to identify oocyte competency biomarkers. Additionally, cell proliferation, apoptosis, and altered pathways were examined following lentivirus transfection. Conclusions: By integrating untargeted metabolomic and lipidomic features, we identified biomarkers indicative of oocyte competency influenced by COVID-19.