Design of a 7 Genomes Escherichia coli Microarray for Comparative Genomic Profiling
Ontology highlight
ABSTRACT: We describe the design and evaluate the use of a high density oligonuclotide microarray covering seven sequenced E. coli genomes in addition to several sequenced E. coli plasmids, bacteriophages, pathogenicity islands and virulence genes. Its utility is demonstrated for comparative genomic profiling of two unsequenced strains, O175:H16 D1 and O157:H7 3538 as well as two well-known control strains, K-12 W3110 and O157:H7 EDL933. By using fluorescently labelled genomic DNA to query the microarrays and subsequently analyse common virulence genes and phage elements, and perform whole genome comparisons, we observed that O175:H16 D1 is a K-12 like strain and confirmed that its phi3538 phage element originated from the E. coli 3538 strain with which it shares a substantial proportion of phage elements. Moreover, a number of genes involved in DNA transfer and recombination was identified in both new strains providing a likely explanation for their capability to transfer phi3538 between them. Analyses of control samples demonstrated that results using our custom designed microarray were representative of the true biology, e.g. by confirming the presence of all known chromosomal phage elements as well as 98.8 and 97.7 percent of queried chromosomal genes for the two control strains. Finally, we demonstrate that use of spatial information, in terms of the physical chromosomal locations of probes, improves the analysis. Keywords: Genomic DNA hybridizations
ORGANISM(S): Escherichia coli
PROVIDER: GSE4690 | GEO | 2006/08/29
SECONDARY ACCESSION(S): PRJNA96733
REPOSITORIES: GEO
ACCESS DATA