Lymph node CD4+ T cell miRNA expression data from naïve C57BL/6J and C57BL/6J-ChrY^SJL
Ontology highlight
ABSTRACT: Understanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants, but not miRNA expression in pathogenic CD4+ T cells. An inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy and the ChrY genetic element exerting regulatory properties. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.
ORGANISM(S): Mus musculus synthetic construct
PROVIDER: GSE47439 | GEO | 2013/05/28
SECONDARY ACCESSION(S): PRJNA205564
REPOSITORIES: GEO
ACCESS DATA