Epigenetic and genetic changes during mouse hematopoietic stem cell aging [Bisulfite-Seq]
Ontology highlight
ABSTRACT: To investigate the global DNA methylation changes in mouse hematopoietic stem cell aging, we performed whole-genome bisulfite sequencing (WGBS). We generated 1,494 million (4mo HSCs), and 1,493 million (24mo HSCs) raw reads; about 82.6% and 84.3%, respectively, were successfully aligned to either strand of the reference genome (mm9). Of all the cytosines present in the reference genome sequence, about 93% of Cs and 99% of CGs were covered in both datasets, with an average coverage of 46-fold (4mo) and 50-fold (24mo). In contrast to the age-associated hypomethylation observed in studies of somatic cells, mentioned above, HSCs showed an increase of methylation with age. The average methylation level over all 16 million covered CpGs increased from 83.5% in young (4mo) HSC to 84.6% in old (24mo) HSC. We observed a total of 448,166 differentially methylated CpGs (DMCs), defined as those having a 20% or more difference in methylation ratio, of which 38.5% (172,609) were hypomethylated (hypo-DMCs) and 61.5% (275,557) were hypermethylated (hyper-DMCs) with aging. For different genomic features, a slightly greater DNA methylation ratio increase was observed for the gene body, LINEs and SINEs, while CGIs and promoters showed balanced increases and decreases. Localization analysis of DMCs indicates that DNA encoding for ribosome RNA (rDNA) is primarily a hotspot for hypo-DMCs, while promoters without CpG islands, CpG island shores and LINE repetitive elements exhibit both hypo- and hyper-DMCs.
ORGANISM(S): Mus musculus
PROVIDER: GSE47815 | GEO | 2014/04/30
SECONDARY ACCESSION(S): PRJNA208011
REPOSITORIES: GEO
ACCESS DATA