Genome-wide methylation maps for Proliferating and Senescent cells
Ontology highlight
ABSTRACT: Altered DNA methylation and associated destabilization of genome integrity and function is a hallmark of cancer. Replicative senescence imposes a limit on proliferative potential that all cancer cells must bypass. Compared to proliferating cells, senescent cells exhibit marked chromatin re-organization. Here we show by whole-genome single-nucleotide bisulfite sequencing that replicative senescent human cells exhibit widespread alterations in their DNA methylome. These changes are linked to mislocalization of the maintenance DNA methyltransferase (DNMT1) in cells approaching senescence, altered replication-coupled DNA methylation and de-repression of repetitive satellite sequences. Deficiency of DNMT1 triggers chromatin changes characteristic of senescence and expression of satellite sequences. Most importantly, but paradoxically, gains and losses of methylation in replicative senescence are similar to those in cancer, and this ‘reprogrammed’ methylation landscape is largely retained when cells escape or bypass senescence. In sum, altered regulation of DNMT1 in cells approaching replicative senescence contributes to changes in chromatin structure and function. Consequently, if senescent cells escape the proliferative barrier, they already harbor epigenetic changes likely to promote malignancy.
Project description:Altered DNA methylation and associated destabilization of genome integrity and function is a hallmark of cancer. Replicative senescence imposes a limit on proliferative potential that all cancer cells must bypass. Compared to proliferating cells, senescent cells exhibit marked chromatin re-organization. Here we show by whole-genome single-nucleotide bisulfite sequencing that replicative senescent human cells exhibit widespread alterations in their DNA methylome. These changes are linked to mislocalization of the maintenance DNA methyltransferase (DNMT1) in cells approaching senescence, altered replication-coupled DNA methylation and de-repression of repetitive satellite sequences. Deficiency of DNMT1 triggers chromatin changes characteristic of senescence and expression of satellite sequences. Most importantly, but paradoxically, gains and losses of methylation in replicative senescence are similar to those in cancer, and this M-bM-^@M-^XreprogrammedM-bM-^@M-^Y methylation landscape is largely retained when cells escape or bypass senescence. In sum, altered regulation of DNMT1 in cells approaching replicative senescence contributes to changes in chromatin structure and function. Consequently, if senescent cells escape the proliferative barrier, they already harbor epigenetic changes likely to promote malignancy. Examination of methylation status in IMR90 cells
Project description:During the progress of senescence, cells sequentially acquire diverse senescent phenotypes together with several gene reprogramming steps. It is still unclear what will be the key regulator in charge of collective gene expression changes at the initial senescent reprogramming. In this study, we show that suppression of DNA methyltransferase 1 (DNMT1)-mediated maintenance DNA methylation activity was an initial event developed prior to gain of senescent phenotypes by employing time-series gene expression profiles of two different senescence models of human diploid fibroblast (HDF), replicative senescence (RS; GSE41714) and H2O2-induced senescence (HS).
Project description:Cellular senescence is classified into two types; replicative and premature senescence. Gene expression and epigenetic changes are different in types of senescence, replicative and premature senescence, and cell types. Normal human diploid fibroblast TIG-3 cells were often used in cellular senescence research, however, their epigenetic profiles were not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed gene expression and DNA methylation profiles among three types of senescent cells, namely, replicative senescent, RAS-induced senescent (RIS) and non-permissive temperature-induced senescent SVts8 cells, using gene expression and methylation microarrays. The expression of genes involved in cell cycle and immune response were commonly either down- or up-regulated among three types of senescent cells, respectively. The sequential alteration of DNA methylation level was observed only in replicative senescent cells in a time-dependent manner, but not in premature senescent cells. The integrated analysis of gene expression and methylation in replicative senescent cells demonstrated that the expression of 759 genes involved in cell cycle and immune response was associated with methylation. Furthermore, hypomethylation occurred at non-CpG island regions (open sea) on the genes with increased expression as well as non-CpG promoter of the genes related to immune response. Several miRNAs regulated by DNA methylation were found to affect the expression of their target genes. Taken together, these results indicate that DNA methylation contributes to introduction and establishment of replicative senescence partly by regulating gene expression.
Project description:Cellular senescence is classified into two types; replicative and premature senescence. Gene expression and epigenetic changes are different in types of senescence, replicative and premature senescence, and cell types. Normal human diploid fibroblast TIG-3 cells were often used in cellular senescence research, however, their epigenetic profiles were not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed gene expression and DNA methylation profiles among three types of senescent cells, namely, replicative senescent, RAS-induced senescent (RIS) and non-permissive temperature-induced senescent SVts8 cells, using gene expression and methylation microarrays. The expression of genes involved in cell cycle and immune response were commonly either down- or up-regulated among three types of senescent cells, respectively. The sequential alteration of DNA methylation level was observed only in replicative senescent cells in a time-dependent manner, but not in premature senescent cells. The integrated analysis of gene expression and methylation in replicative senescent cells demonstrated that the expression of 759 genes involved in cell cycle and immune response was associated with methylation. Furthermore, hypomethylation occurred at non-CpG island regions (open sea) on the genes with increased expression as well as non-CpG promoter of the genes related to immune response. Several miRNAs regulated by DNA methylation were found to affect the expression of their target genes. Taken together, these results indicate that DNA methylation contributes to introduction and establishment of replicative senescence partly by regulating gene expression.
Project description:Cellular senescence is classified into two types; replicative and premature senescence. Gene expression and epigenetic changes are different in types of senescence, replicative and premature senescence, and cell types. Normal human diploid fibroblast TIG-3 cells were often used in cellular senescence research, however, their epigenetic profiles were not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed gene expression and DNA methylation profiles among three types of senescent cells, namely, replicative senescent, RAS-induced senescent (RIS) and non-permissive temperature-induced senescent SVts8 cells, using gene expression and methylation microarrays. The expression of genes involved in cell cycle and immune response were commonly either down- or up-regulated among three types of senescent cells, respectively. The sequential alteration of DNA methylation level was observed only in replicative senescent cells in a time-dependent manner, but not in premature senescent cells. The integrated analysis of gene expression and methylation in replicative senescent cells demonstrated that the expression of 759 genes involved in cell cycle and immune response was associated with methylation. Furthermore, hypomethylation occurred at non-CpG island regions (open sea) on the genes with increased expression as well as non-CpG promoter of the genes related to immune response. Several miRNAs regulated by DNA methylation were found to affect the expression of their target genes. Taken together, these results indicate that DNA methylation contributes to introduction and establishment of replicative senescence partly by regulating gene expression.
Project description:Cellular senescence is classified into two groups; replicative and premature senescence. The gene expression and epigenetic changes differ between two groups of senescence, replicative and premature senescence, and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research, however, their epigenetic profiles are not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicative senescent, ras-induced senescent (RIS), and non-permissive temperature-induced senescent SVts8 cells, using gene expression and methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The sequential alteration of the DNA methylation level in a time-dependent manner was observed in replicatively senescent cells, but not in premature senescent cells. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that the expression of 759 genes involved in the cell cycle and immune response was associated with methylation. Furthermore, hypomethylation occurred in non-CpG island regions (open sea) of the genes exhibiting increased expression as well as non-CpG island promoters of the genes related to the immune response. Several miRNAs regulated through DNA methylation were found to affect the expression of their target genes. Taken together, these results indicate that DNA methylation contributes to the introduction and establishment of replicative senescence partly by regulating gene expression.
Project description:<p><strong>BACKGROUND:</strong> Periodontal ligament mesenchymal stem cells (PDLSCs) are a promising cell resource for cell-based regenerative medicine in dentistry. PDLSCs inevitably acquire a senescent phenotype after prolonged in vitro expansion, and the key regulators of cells during replicative senescence remain unclear.</p><p><strong>METHODS:</strong> We cultured periodontal ligament stem cells to passages 4, 10 and 20 (P4, P10, P20). The senescent phenotypes, proliferation and migration ability of PDLSCs (P4, P10, P20) were detected, and non-targeted metabonomic sequencing was performed. We treated PDLSCs with AICAR and detected the expression of FOXO1, FOXO3a, FOXO6 and AMPK phosphorylation (p-AMPK) levels of replicating senescent PDLSCs to explore the correlation between the metabolic changes and the AMPK pathway.</p><p><strong>RESULTS:</strong> Immunofluorescence staining of γ-H2AX, β-galactosidase staining, cell scratch test and qPCR were performed to confirm the occurrence of replicative senescence in PDLSCs during passaging. Three groups of cells at passage 4 (P4), passage 10 (P10) and passage 20 (P20) were collected for non-targeted metabolomics analysis. Metabonomic sequencing showed that the metabolism of replicative senescence in PDLSCs varied significantly. In particular, the content of fatty acid metabolites decreased with senescence, including capric acid, stearic acid, myristic acid and dodecanoic acid. KEGG pathway analysis showed that the AMPK signaling pathway was closely related to AMP levels. The AMP:ATP ratio increased in senescent PDLSCs; however, the levels of p-AMPK and the profile of FOXO1 and FOXO3a, which are downstream of the AMPK signaling pathway, decreased with senescence. We treated PDLSCs with AICAR, an activator of the AMPK pathway, and the phosphorylated AMPK level at P20 PDLSCs was partially restored. </p><p><strong>CONCLUSION:</strong> In summary, our study suggests that the metabolic process of PDLSCs is active in the early stage of senescence, prefers to consume fatty acids, and is attenuated in the later stages of senescence. AMP accumulates in replicative senescent PDLSCs; however, the sensitivity of AMPK phosphorylation sites is impaired, causing senescent PDLSCs to fail to respond to changes in energy metabolism. Our findings provide a new basis for the clinical application of periodontal ligament stem cells.</p>
Project description:Replicative senescent cells reportedly share similar DNA methylation changes with cancer cells, which are purported to facilitate tumorigenesis in cells bypassing senescence. However, we now report biologically critical and distinct patterns of DNA methylation evolution between replicative and oncogene-induced senescence and transformation in a classic human cell transformation model. While overall DNA methylation losses and gains occur in both replicative senescent and transformed cells, the patterns evolve more programmatically for the former and stochastically for the latter. Oncogene-induced senescence is an acute process involving minimal changes to DNA methylation. The stochastic DNA methylation alterations in transformation mainly involve a set of pro-survival promoter CpG-island methylation events targeting genes controlling development and differentiation processes, while the senescence-specific promoter changes occur in genes involved in positive regulation of cellular biosynthesis and macromolecular metabolism. The above set of pro-survival promoter CpG-island hypermethylation events, but not the senescence-specific events, are prone to occur in primary tumors and aging tissues. Importantly, cells manifest senescence-specific epigenomic patterns very early during commitment to senescence, and while these “near-senescent” cells can be immortalized, they are refractory to transformation by H-Ras oncoprotein (H-rasV12). The senescence-specific methylation is retained during immortalization and transformation attempts, suggesting it does not function to promote tumorigenesis. Thus, abnormalities in cancer-related methylation has their origins in aging and not replicative senescence, and senescence-associated methylation potentially prevents malignant transformation.
Project description:Replicative senescent cells reportedly share similar DNA methylation changes with cancer cells, which are purported to facilitate tumorigenesis in cells bypassing senescence. However, we now report biologically critical and distinct patterns of DNA methylation evolution between replicative and oncogene-induced senescence and transformation in a classic human cell transformation model. While overall DNA methylation losses and gains occur in both replicative senescent and transformed cells, the patterns evolve more programmatically for the former and stochastically for the latter. Oncogene-induced senescence is an acute process involving minimal changes to DNA methylation. The stochastic DNA methylation alterations in transformation mainly involve a set of pro-survival promoter CpG-island methylation events targeting genes controlling development and differentiation processes, while the senescence-specific promoter changes occur in genes involved in positive regulation of cellular biosynthesis and macromolecular metabolism. The above set of pro-survival promoter CpG-island hypermethylation events, but not the senescence-specific events, are prone to occur in primary tumors and aging tissues. Importantly, cells manifest senescence-specific epigenomic patterns very early during commitment to senescence, and while these “near-senescent” cells can be immortalized, they are refractory to transformation by H-Ras oncoprotein (H-rasV12). The senescence-specific methylation is retained during immortalization and transformation attempts, suggesting it does not function to promote tumorigenesis. Thus, abnormalities in cancer-related methylation has their origins in aging and not replicative senescence, and senescence-associated methylation potentially prevents malignant transformation.
Project description:Senescent cells secrete many molecules, which contribute to the prevention of cancer progression. We induced MSC senescence by oxidative stress, DNA damage, and replicative exhaustion. The first two are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named chronic senescence. We cultivated cancer cells in the presence of acute and chronic senescent MSC conditioned media and evaluated proliferation, DNA damage, apoptosis and senescence.