Genome-wide methylation maps for Proliferating and Senescent cells
Ontology highlight
ABSTRACT: Altered DNA methylation and associated destabilization of genome integrity and function is a hallmark of cancer. Replicative senescence imposes a limit on proliferative potential that all cancer cells must bypass. Compared to proliferating cells, senescent cells exhibit marked chromatin re-organization. Here we show by whole-genome single-nucleotide bisulfite sequencing that replicative senescent human cells exhibit widespread alterations in their DNA methylome. These changes are linked to mislocalization of the maintenance DNA methyltransferase (DNMT1) in cells approaching senescence, altered replication-coupled DNA methylation and de-repression of repetitive satellite sequences. Deficiency of DNMT1 triggers chromatin changes characteristic of senescence and expression of satellite sequences. Most importantly, but paradoxically, gains and losses of methylation in replicative senescence are similar to those in cancer, and this ‘reprogrammed’ methylation landscape is largely retained when cells escape or bypass senescence. In sum, altered regulation of DNMT1 in cells approaching replicative senescence contributes to changes in chromatin structure and function. Consequently, if senescent cells escape the proliferative barrier, they already harbor epigenetic changes likely to promote malignancy.
ORGANISM(S): Homo sapiens
PROVIDER: GSE48580 | GEO | 2013/11/25
SECONDARY ACCESSION(S): PRJNA210744
REPOSITORIES: GEO
ACCESS DATA