Project description:Profiling of gain and loss of DNA fragments in HHR comparing control SDR. Two analyses were performed; sample 1, SDR (male) vs HHR (male) and sample 2, SDR (female) vs HHR (female).
Project description:Laboratory rats such as the Sprague-Dawley (SD) rats are an important model for biomedical studies in relation to human physiological or pathogenic processes. Here we report the first catalog of microbial genes in fecal samples from Sprague-Dawley rats. The catalog was established using 98 fecal samples from 49 SD rats, divided in 7 experimental groups, and collected at different time points 30 days apart. The established gene catalog comprises 5,130,167 non-redundant genes with an average length of 750 bp, among which 64.6% and 26.7% were annotated to phylum and genus levels, respectively. Functionally, 53.1%, 21.8%,and 31% of the genes could be annotated to KEGG orthologous groups, modules, and pathways, respectively. A comparison of rat gut metagenome catalogue with human or mouse revealed a higher pairwise overlap between rats and humans (2.47%) than between mice and humans (1.19%) at the gene level. Ninety-seven percent of the functional pathways in the human catalog were present in the rat catalogue, underscoring the potential use of rats for biomedical research.
Project description:Lead (Pb) exposure occurs together with other metals including zinc (Zn). This study investigated the impact of Zn on Pb tissue accumulation and Pb-induced toxicities. Animals (n=6 rats per group) were exposed to lead acetate (PbAc) or a combination of PbAc and zinc acetate (ZnAc) under the following groups: control (deionized water), low PbAc [12 mg/kg PbAc (3 mg PbAc/rat/day)], low PbAc-ZnAc [12 mg/kg PbAc (3 mg PbAc/rat/day) + 0.2 mg ZnAc/rat/48 hr], high PbAc [120 mg/kg (30 mg PbAc/rat/day)], and high PbAc-ZnAc [120 mg/kg (30 mg PbAc/rat/day) + 1 mg ZnAc/rat/48 hr] for 8 weeks. A significant reduction in body weight gain was observed in the high PbAc group relative to the control group. Muscles and testes both had reduced and increased Pb uptake in low PbAc-ZnAc and high PbAc-ZnAc groups compared to PbAc only groups, respectively. Bone Pb levels in the high PbAc-ZnAc group were lower than the high PbAc group. Zinc co-administration attenuated Pb-induced inhibition of delta aminolaevulinic acid dehydratase enzyme and enhanced catalase enzyme activity at a high level of exposure. Moreover, ZnAc seems to have minimized the effects of Pb-induced mRNA dysregulation in antioxidant and antiapoptotic enzymes encoding genes. Heme oxygenase-1 was downregulated in the kidney and brain in the low PbAc group. Liver glutathione peroxidase and thioredoxin reductase-1 were downregulated in the high PbAc group. These findings suggest that zinc co-administration with lead may partially mitigate against Pb-induced toxicities.
Project description:We used a modified Walker-Mason scald burn rat model to demonstrate that Pseudomonas aeruginosa, a common opportunistic pathogen in the burn ward and notable biofilm former, establishes biofilms within deep partial-thickness burn wounds in rats.Deep partial-thickness burn wounds, ~10% of the TBSA, were created in anesthetized male Sprague-Dawley rats (350-450 g; n = 84). Immediately post-burn, 100 µl of P. aeruginosa in phosphate-buffered saline at 1 × 103, 1 × 104, or 1 × 105 cells/wound was spread over the burn surface . At 1, 3, 7, and 11 days post-burn, animals were euthanized and blood and tissue were collected for complete blood counts, colony-forming unit (CFU) counts, biofilm gene expression, histology, scanning electron microscopy (SEM), and myeloperoxidase activity in the burn eschar.P. aeruginosa developed robust biofilm wound infections, plateauing at ~1 × 109 CFU/g burn tissue within 7 days regardless of inoculum size. Expression of Pseudomonas alginate genes and other virulence factors in the infected wound indicated formation of mature P. aeruginosa biofilm within the burn eschar. Compared to un-inoculated wounds, P. aeruginosa infection caused both local and systemic immune responses demonstrated by changes in systemic neutrophil counts, histology, and myeloperoxidase activity within the burn wound. Additionally, SEM showed P. aeruginosa enmeshed within an extracellular matrix on the burn surface as well as penetrating 500-600 µm deep into the eschar.P. aeruginosa establishes biofilms within deep partial-thickness burn wounds and invades deep into the burned tissue. This new in vivo biofilm infection model is valuable for testing novel anti-biofilm agents to advance burn care.
Project description:We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks.
Project description:Middle cerebral artery occlusion (MCAo) in rat represent the ischemic stroke in human. Rodents subjected to MCAo and treated with venom phospholipase A2 showed reduction in infarct volume after 24hours of stroke. We studied the global gene expression of the reduction in infarct volume using Affymetrix Gene Chips. We analysed all the genes that were up or down regulated in the study.
Project description:Non-alcoholic fatty liver disease (NAFLD) has increased over the last decades and may evolve into hepatocellular carcinoma (HCC). As HCC is challenging to treat, knowledge on the modifia-ble risk factors for NAFLD/HCC, (e.g. hypercaloric diets rich in fructose) is essential. We used a model of diethyl nitrosamine-induced hepatocarcinogenesis to investigate the liver cancer-promoting effects of a diet supplemented with 10% liquid fructose, administered to male and female rats for 11 months. A subset of the fructose-supplemented rats received resveratrol in the last 4 months of treatment. We observed metabolic abnormalities mainly in the female fructose-supplemented rats (increases in weight, adiposity, and plasma glucose and triglycerides, as well as liver triglycerides and a reduced insulin sensitivity index), which were partially reversed by resveratrol. The livers of fructose-supplemented rats showed no de visu or histological evi-dence of liver tumorigenesis. Targeted analysis of 84 cancer-related genes in the female liver samples revealed expression changes associated with cancer-related pathways, but individual genes indicated that some changes increased the risk of hepatocarcinogenesis (Sfrp2, Ccl5, Socs3, and Gstp1), while others exerted a protective/preventive effect (Bcl2 and Cdh1). In conclusion, our data do not clearly demonstrate that chronic fructose supplementation promotes HCC development in rats.
Project description:Rat pups treated with sodium selenite are typically used as an in vivo model to mimic age-related nuclear cataract. Reactive oxygen species (ROS) production, lipid peroxidation, reduction of antioxidant enzymes, crystalline proteolysis, and apoptosis are considered factors that contribute to pathogenesis of age-related nuclear cataract. In the present study, we investigated whether Pinus densiflora bark extract has potential to prevent cataract formation and elucidated the underlying mechanism.Sprague Dawley rats were divided into six groups (n=10). Group 1 rat pups (the control) were treated with only normal saline. The rat pups in groups 2 to 6 were given a subcutaneous injection with sodium selenite (18 ?mol/kg bodyweight) on postnatal (P) day 10. Group 3 rat pups (the positive control) were given gastric intubation with curcumin (80 mg/kg bodyweight) on P9, P10, and P11. The rat pups in groups 4 to 6 were given gastric intubation with P. densiflora bark extract 40 mg/kg, 80 mg/kg, and 120 mg/kg, respectively, on P9, P10, and P11.This study showed that P. densiflora bark extract dose-dependently prevented cataract formation. Water-soluble protein, glutathione, superoxide dismutase, glutathione peroxidase, and catalase activity levels were found to be high, and conversely, water-insoluble protein, malondialdehyde, and Ca2+-ATPase were found to be low in the groups treated with P. densiflora bark extract compared to group 2. Real-time PCR analysis showed ?A-crystalline, lens-specific m-calpain (Lp84), lens-specific intermediates (filensin and phakinin), and antiapoptotic factor (Bcl-2) were downregulated, and the apoptotic factors (caspase-3 and Bax) and plasma membrane Ca2+-ATPase (PMCA-1) were upregulated in group 2 compared to group 1. P. densiflora bark extract regulated the imbalance of these genes. The increased cleavage form of caspase-3 was lowered in the groups treated with P. densiflora bark extract. In conclusion, P. densiflora bark extract prevented selenite-induced cataract formation via regulating antioxidant enzymes, inhibiting m-calpain-induced proteolysis, and apoptosis, and thus, maintained the transparency of the lens.These results suggested that P. densiflora bark extract could be a new agent for preventing age-related nuclear cataract.