Project description:Analysis of gene expression in Mouse Ter119+ erythroid cells Paired end RNA-seq analysis of PolyA selected RNA from Mouse Ter119+ erythroid cells
Project description:Analysis of Non-Polyadenylated gene expression in Mouse Ter119+ erythroid cells Paired end RNA-seq analysis of PolyA Minus RNA from Mouse Ter119+ erythroid cells
Project description:Transcription Start Site analysis in Mouse Ter119+ erythroid cells Strand Specific Paired end NanoCage analysis of Total RNA from Mouse Ter119+ erythroid cells
Project description:Using RNA-seq technology, we quantitatively determined the expression profile of microRNAs during mouse terminal erythroid differentiation. CFU-E erythroid progenitors were isolated from E14.5 fetal liver as the Ter119, B220, Mac-1, CD3 and Gr-1 negative, C-Kit positive and 20% high CD71 population. Mature Ter119+ erythroblasts were isolated from E14.5 fetal liver as C-Kit negative and Ter119 positive population. Consistent with nuclear condensation and global gene expression shut down during terminal erythroid differentiation, we found that the majority of microRNAs are downregulated in more mature Ter119+ erythroblasts compared with CFU-E erythroid progenitors.
Project description:Using RNA-seq technology, we quantitatively determined the expression profile of microRNAs during mouse terminal erythroid differentiation. CFU-E erythroid progenitors were isolated from E14.5 fetal liver as the Ter119, B220, Mac-1, CD3 and Gr-1 negative, C-Kit positive and 20% high CD71 population. Mature Ter119+ erythroblasts were isolated from E14.5 fetal liver as C-Kit negative and Ter119 positive population. Consistent with nuclear condensation and global gene expression shut down during terminal erythroid differentiation, we found that the majority of microRNAs are downregulated in more mature Ter119+ erythroblasts compared with CFU-E erythroid progenitors. Examination of microRNA expression profiles in 2 cell types
Project description:The aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process. Affymetrix microarrays were performed on fetal liver cells (both TER119- progenitor cells and TER119+ erythroblast cells) from E14.5 wildtype and Klf3 KO mice.
Project description:We report genome-wide maps of transcription in mouse erythroid cells. We used an approach to survey poly(A)+ (mRNA) (GSE26877) and non-polyadenylated RNA poly(A)- (GSE27920) separately. This provides an alternative framework for comprehensive transcriptome profiling in mammalian cells. Two Samples. mRNA-seq from wild type murine Ter119+ cells and mRNA-seq from ?MCS-P6MCS-R3-/- Ter119+ cells
Project description:The aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process. Affymetrix microarrays were performed on fetal liver cells (both TER119- progenitor cells and TER119+ erythroblast cells) from E14.5 wildtype and Klf3 KO mice. Four wildtype TER119- replicates, four Klf3 KO TER119- replicates, four wildtype TER119+ replicates, three Klf3 KO TER119+ replicates. All are from E14.5 fetal liver.