Project description:The inner ear in mammals is derived from a simple ectodermal thickening called the otic placode. Through a series of complex morphological changes, the placode forms the mature inner ear comprising of the auditory organ (cochlea) and the vestibular/balance organs (utricle, saccule, and three semi-circular canals). The vast majority of genes known to be involved during inner ear development have been found through mutational screens or by chance. To identify genes that can serve as novel candidates required for inner ear development, and also candidate genes for uncloned human deafnesses, inner ear tissues from mouse embryos from E9 to E15 were microdissected and expression-profiled at half-day intervals. Also profiled was the non-inner ear mesenchymal tissue surrounding the inner ear tissue. Various patterns of gene expression were identified, and significant biological pathways that these genes represented were identified. Also identified were mouse genes whose human orthologs are located within uncloned non-syndromic deafness intervals, thus serving as candidates for sequence analysis. Keywords: Developmental timecourse
Project description:The inner ear in mammals is derived from a simple ectodermal thickening called the otic placode. Through a series of complex morphological changes, the placode forms the mature inner ear comprising of the auditory organ (cochlea) and the vestibular/balance organs (utricle, saccule, and three semi-circular canals). The vast majority of genes known to be involved during inner ear development have been found through mutational screens or by chance. To identify genes that can serve as novel candidates required for inner ear development, and also candidate genes for uncloned human deafnesses, inner ear tissues from mouse embryos from E9 to E15 were microdissected and expression-profiled at half-day intervals. Also profiled was the non-inner ear mesenchymal tissue surrounding the inner ear tissue. Various patterns of gene expression were identified, and significant biological pathways that these genes represented were identified. Also identified were mouse genes whose human orthologs are located within uncloned non-syndromic deafness intervals, thus serving as candidates for sequence analysis. Experiment Overall Design: Inner ear tissues from E9 to E15 were microdissected at half-day intervals. E9 is the earliest stage when the otic placode is clearly visible and able to be microdissected cleanly. E15 is the stage when all the organs of the inner ear have become established, as have the sensory hair and non-sensory support cells within those organs. For each of the stages from E9 to E10, whole inner ears were profiled. For each of the stages from E10.5 to E12, the primordial cochlear and vestibular organs were profiled separately. For each of the stages from E12.5 to E15, the cochlea and the saccule were profiled separately, whereas the utricle and the three ampullae were combined and profiled together. Any given tissue from any given stage was a collection of anywhere between 4 to 17 identical tissues, and was obtained in duplicate (i.e. from different litters). Hence, a total of 58 inner ear samples were obtained. Moreover, non-inner ear tissue found in the immediate vicinity of inner ear tissue was also obtained and profiled. Specifically, all non-inner ear tissue from E9 was profiled in duplicate. Non-inner ear tissue from E9.5 to E10.5 was pooled and profiled together (in duplicate), whereas that from E11 to E15 was pooled and profiled together (also in duplicate). Therefore, a total of 6 non-inner samples were obtained.
Project description:Objective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. Methods: To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Results: Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Conclusion: Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media. There are 6 control samples and 8 samples trans-tympanically injected with H flu 10e9 for 6 hours. Each sample is a pool of 4 animals
Project description:The inner ear continues to grow and develop until the auditory and vestibular systems reach full maturity and all of the genes involved in this process have yet to be identified. Previous gene based analysis have primarily focused on the early developmental stages following induction and initial formation of the inner ear. The aim of this study is to identify new candidate genes for inner ear development. Microarrays were used to produce expression profiles from larval stages 56,57,58 of the Xenopus laevis inner ear. The data produced from this work represent an annotated resource that can be utilized by the Xenopus community to provide candidates for further functional analysis. Xenopus inner ears were isolated from larval animals for RNA extraction and hybridization to Affymetrix GeneChip microarrays.
Project description:Objective: Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. Methods: To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Results: Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Conclusion: Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.
Project description:The inner ear continues to grow and develop until the auditory and vestibular systems reach full maturity and all of the genes involved in this process have yet to be identified. Previous gene based analysis have primarily focused on the early developmental stages following induction and initial formation of the inner ear. The aim of this study is to identify new candidate genes for inner ear development. Microarrays were used to produce expression profiles from larval stages 50,51,52 of the Xenopus laevis inner ear. The data produced from this work represent an annotated resource that can be utilized by the Xenopus community to provide candidates for further functional analysis.
Project description:The inner ear continues to grow and develop until the auditory and vestibular systems reach full maturity and all of the genes involved in this process have yet to be identified. Previous gene based analysis have primarily focused on the early developmental stages following induction and initial formation of the inner ear. The aim of this study is to identify new candidate genes for inner ear development. Microarrays were used to produce expression profiles from larval stages 56,57,58 of the Xenopus laevis inner ear. The data produced from this work represent an annotated resource that can be utilized by the Xenopus community to provide candidates for further functional analysis.
Project description:We implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. Gene expression analysis of Xenopus laevis juvenile inner ear tissue. Inner ear RNA isolated from three groups of 5-10 juvenile X. laevis. Each biological replicate represents pooled inner ear RNA from 10-19 inner ears.
Project description:Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In the Pou4f3-Cre:Rb1 flox/flox (Rb1 cKO) inner ear, utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of Rb1 cKO cochlea and utricle. P6 or 2-month control and Rb1 cKO littermates were euthanized and the inner ear tissues were dissected. Total RNA was extracted from the pooled samples. Technical duplicates of the pooled RNA were used for microarray.
Project description:We implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear.