Project description:An experiment was designed to use a computer program to create lithography masks using a pseudo-random pattern generator. The data in this file are results from immunosignaturing 8 different monoclonals using a 10,000 peptide random-sequence microarray. Peptides were synthesized by Sigma Aldrich, and printed onto glass slides and used to test several different parameters.
Project description:In this paper several computer programs were used to simulate in situ synthesis of peptides using shadow masks and BOC synthesis. The peptides were designed to be random, or pseudo-random, but fulfill requirements of immunosignaturing. This file contains data from actual 330,000 peptide arrays that used the first iteration of the peptide generation algorithm. Monoclonal antibodies were bound to the microarrays and the total number of peptides that distinguished each monoclonal was measured. This provides a baseline against which to compare purely random sequences.
Project description:A computer program was used to create random amino acid sequences based on and restricted by physical shadow masks which will be used for lithography-based synthesis of peptides. The output from this algorithm was used to create peptides that were synthesized by Sigma Aldrich, and printed onto glass slides. The arrays contained 384 peptides printed in duplicate for each of 4 different mask designs. 52 different monoclonal antibodies were incubated on these microarrays and analyzed for their propensity to bind the peptides created from each mask set. The diversity of binding served as a proxy for the 'randomness' of these peptides, and provided information about how many masks are needed to truly generate random sequence peptides.
Project description:A computer program was used to create random amino acid sequences based on and restricted by physical shadow masks which will be used for lithography-based synthesis of peptides. The output from this algorithm was used to create peptides that were synthesized by Sigma Aldrich, and printed onto glass slides. The arrays contained 384 peptides printed in duplicate for each of 4 different mask designs. 52 different monoclonal antibodies were incubated on these microarrays and analyzed for their propensity to bind the peptides created from each mask set. The diversity of binding served as a proxy for the 'randomness' of these peptides, and provided information about how many masks are needed to truly generate random sequence peptides. two replicates of each peptide was printed on 1 Mask peptide microarray. A minimum of Two microarrays were tested for each sample. Image was qualified using in-house metrics for quality assurance.
Project description:In this paper several computer programs were used to simulate in situ synthesis of peptides using shadow masks and BOC synthesis. The peptides were designed to be random, or pseudo-random, but fulfill requirements of immunosignaturing. This file contains data from actual 330,000 peptide arrays that used the first iteration of the peptide generation algorithm. Monoclonal antibodies were bound to the microarrays and the total number of peptides that distinguished each monoclonal was measured. This provides a baseline against which to compare purely random sequences. One replicate of each peptide was printed on 1 330k peptide microarray. One microarray were tested for each sample. Image was qualified using in-house metrics for quality assurance.
Project description:An experiment was designed to use a computer program to create lithography masks using a pseudo-random pattern generator. The data in this file are results from immunosignaturing 8 different monoclonals using a 10,000 peptide random-sequence microarray. Peptides were synthesized by Sigma Aldrich, and printed onto glass slides and used to test several different parameters. One replicate of each peptide was printed on 1 CIM_10K_v2 peptide microarray. One microarray were tested for each sample. Image was qualified using in-house metrics for quality assurance.
Project description:To pattern electrical metal contacts, electron beam lithography or photolithography are commonly utilized, and these processes require polymer resists with solvents. During the patterning process the graphene surface is exposed to chemicals, and the residue on the graphene surface was unable to be completely removed by any method, causing the graphene layer to be contaminated. A lithography free method can overcome these residue problems. In this study, we use a micro-grid as a shadow mask to fabricate a graphene based field-effect-transistor (FET). Electrical measurements of the graphene based FET samples are carried out in air and vacuum. It is found that the Dirac peaks of the graphene devices on SiO2 or on hexagonal boron nitride (hBN) shift from a positive gate voltage region to a negative region as air pressure decreases. In particular, the Dirac peaks shift very rapidly when the pressure decreases from ~2 × 10(-3) Torr to ~5 × 10(-5) Torr within 5 minutes. These Dirac peak shifts are known as adsorption and desorption of environmental gases, but the shift amounts are considerably different depending on the fabrication process. The high gas sensitivity of the device fabricated by shadow mask is attributed to adsorption on the clean graphene surface.
Project description:Single nanowires (NWs) have a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics, but, to date, no technique can produce single sub-20 nm wide NWs with electrical connections in a scalable fashion. In this work, we combine conventional optical and crack lithographies to generate single NW devices with controllable and predictable dimensions and placement and with individual electrical contacts to the NWs. We demonstrate NWs made of gold, platinum, palladium, tungsten, tin, and metal oxides. We have used conventional i-line stepper lithography with a nominal resolution of 365 nm to define crack lithography structures in a shadow mask for large-scale manufacturing of sub-20 nm wide NWs, which is a 20-fold improvement over the resolution that is possible with the utilized stepper lithography. Overall, the proposed method represents an effective approach to generate single NW devices with useful applications in electrochemistry, photonics, and gas- and biosensing.