The Insecticides Cyfluthrin & Chlorpyrifos Alter Expression of Genes with Diverse Functions in Primary Human Astrocytes
Ontology highlight
ABSTRACT: Given the widespread use of insecticides in the environment, it is important to perform studies evaluating their potential effects on humans. Organophosphate insecticides, such as chlorpyrifos, are being phased out; however, the use of pyrethroids in household pest control is increasing. While chlorpyrifos is relatively well studied, much less is known about the potential neurotoxicity of cyfluthrin and other pyrethroids. To gain insights into the neurotoxicity of cyfluthrin, we compared and evaluated the toxicity profiles of chlorpyrifos and cyfluthrin in primary human fetal astrocytes. We found that at the same concentrations, cyfluthrin exerts as great as, or greater toxic effects on the growth, survival, and proper functioning of human astrocytes. By using microarray gene expression profiling, we systematically identified and compared the potential molecular targets of chlorpyrifos and cyfluthrin, at a genome-wide scale. We found that chlorpyrifos and cyfluthrin targeted a similar number of transcripts. These targets include chaperones, signal transducers, transcriptional regulators, transporters, and those involved in behavior and development. Further computational and biochemical analyses suggest that cyfluthrin and chlorpyrifos up-regulated certain targets of the interferon-gamma and insulin signaling pathways, and that they increased the protein levels of activated ERK1/2, a key component of insulin signaling; IL-6, a key inflammatory mediator; and GFAP, a marker of inflammatory astrocyte activation. These results suggest that inflammatory activation of astrocytes might be an important mechanism underlying neurotoxicity of both chlorpyrifos and cyfluthrin. Keywords: treatment comparison
ORGANISM(S): Homo sapiens
PROVIDER: GSE5023 | GEO | 2006/07/27
SECONDARY ACCESSION(S): PRJNA95813
REPOSITORIES: GEO
ACCESS DATA