Project description:BackgroundMany studies have observed space-time clustering of childhood leukemia (CL) yet few have attempted to elicit etiological clues from such clustering. We recently reported space-time clustering of CL around birth, and now aim to generate etiological hypotheses by comparing clustered and nonclustered cases. We also investigated whether the clustering resulted from many small aggregations of cases or from a few larger clusters.MethodsWe identified cases of persons born and diagnosed between 1985 and 2014 at age 0-15 years from the Swiss Childhood Cancer Registry. We determined spatial and temporal lags that maximized evidence of clustering based on the Knox test and classified cases born within these lags from another case as clustered. Using logistic regression adjusted for child population density, we determined whether clustering status was associated with age at diagnosis, immunophenotype, cytogenetic subtype, perinatal and socioeconomic characteristics, and pollution sources.ResultsAnalyses included 1,282 cases of which 242 were clustered (born within 1 km and 2 years from another case). Of all investigated characteristics only the t(12;21)(p13;q22) translocation (resulting in ETV6-RUNX1 fusion) differed significantly in prevalence between clustered and nonclustered cases (40% and 25%, respectively; adjusted OR 2.54 [1.52-4.23]; p = 0.003). Spatio-temporal clustering was driven by an excess of aggregations of two or three children rather than by a few large clusters.ConclusionOur findings suggest ETV6-RUNX1 is associated with space-time clustering of CL and are consistent with an infection interacting with that oncogene in early life leading to clinical leukemia.
Project description:We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with ChIP-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture (SILAC), we identified directly and indirectly regulated targets of the TEL-AML1 fusion protein.
Project description:We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with ChIP-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture (SILAC), we identified directly and indirectly regulated targets of the TEL-AML1 fusion protein.
Project description:We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with ChIP-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture (SILAC), we identified directly and indirectly regulated targets of the TEL-AML1 fusion protein.
Project description:We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with ChIP-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture (SILAC), we identified directly and indirectly regulated targets of the TEL-AML1 fusion protein.
Project description:We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with ChIP-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture (SILAC), we identified directly and indirectly regulated targets of the TEL-AML1 fusion protein.
Project description:We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with ChIP-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture (SILAC), we identified directly and indirectly regulated targets of the TEL-AML1 fusion protein.