Analysis of the regulation of circadian gene expression in cyanobacteria with RNA sequencing
Ontology highlight
ABSTRACT: The cyanobacterium Synechococcus elongatus contains a circadian clock which coordinates circadian changes in gene expression of a large percentage of its genes. The response regulator RpaA has been implicated as an important regulator of many circadian genes, but the role of this protein in regulating changes in gene expression genome-wide is not known. We show that deletion of rpaA abrogates circadian gene expression genome-wide and arrests cells in a gene expression state highly similar to that of wildtype cells in the morning. Furthermore, we show that RpaA binds DNA in an circadian manner that is dependent on phosphorylation of the protein. To demonstrate the sufficiency of phosphorylated RpaA in driving global changes in gene expression, we used RNA sequencing to measure changes in gene expression elicited by a phosphomimetic of RpaA (RpaA D53E) and compared these changes to those that occur during a circadian cycle in wildtype cells. This analysis reveals that induction of RpaA D53E is sufficient to drive all circadian gene expression changes that happen from dawn to dusk in wildtype cells. Interestingly, the dynamics of gene expression elicited by RpaA D53E induction mirror those observed during a circadian cycle in wildtype cells, suggesting that the dynamics of circadian gene expression and hard-wired in the regulon downstream of RpaA.
ORGANISM(S): Synechococcus elongatus PCC 7942 = FACHB-805
PROVIDER: GSE51112 | GEO | 2013/12/04
SECONDARY ACCESSION(S): PRJNA221220
REPOSITORIES: GEO
ACCESS DATA