Project description:Transcriptional profiling of methanotrophic bacteria (pmoA gene) in methane oxidation biocover soil by depth Three-different depth condition in methane oxidation biocover soil: top, middle and botton layer soil: genomic DNA extract. Three replicate per array.
Project description:Our goal is to convert methane efficiently into liquid fuels that may be more readily transported. Since aerobic oxidation of methane is less efficient, we focused on anaerobic processes to capture methane, which are accomplished by anaerobic methanotrophic archaea (ANME) in consortia. However, no pure culture capable of oxidizing and growing on methane anaerobically has been isolated. In this study, Methanosarcina acetivorans, an archaeal methanogen, was metabolically engineered to take up methane, rather than to generate it. To capture methane, we cloned the DNA coding for the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable archaeal organism from a Black Sea mat into M. acetivorans to effectively run methanogenesis in reverse. The engineered strain produces primarily acetate, and our results demonstrate that pure cultures can grow anaerobically on methane.
Project description:Multiple species of bacteria oxidize methane in the environment after it is produced by anaerobic ecosystems. These organisms provide a carbon and energy source for species that cannot oxidize methane themselves, thereby serving a key role in these niches while also sequestering this potent greenhouse gas before it enters the atmosphere. Deciphering the molecular details of how methane-oxidizing bacteria interact in the environment enables us to understand an important aspect that shapes the structure and function these communities. Here we show that many members of the Methylomonas genus possess a LuxR-type acyl-homoserine lactone (acyl-HSL) receptor/transcription factor highly homologous to MbaR from the quorum sensing (QS) system of Methylobacter tundripaludum, another methane-oxidizer that has been isolated from the same environment. We reconstitute this detection system in Escherichia coli and also use mutant and transcriptomic analysis to show that the receptor from Methylomonas species strain LW13 (LW13) is active and alters LW13 gene expression in response to the acyl-HSL produced by M. tundripaludum. These findings provide a molecular mechanism for how two species of bacteria that may compete for resources in the environment can interact in a specific manner through a chemical signal.
Project description:Metabolic flexibility in aerobic methane oxidising bacteria (methanotrophs) enhances cell growth and survival in instances where resources are variable or limiting. Examples include the production of intracellular compounds (such as glycogen or polyhydroxyalkanoates) in response to unbalanced growth conditions and the use of some energy substrates, besides methane, when available. Indeed, recent studies show that verrucomicrobial methanotrophs can grow mixotrophically through oxidation of hydrogen and methane gases via respiratory membrane-bound group 1d [NiFe] hydrogenases and methane monooxygenases respectively. Hydrogen metabolism is particularly important for adaptation to methane and oxygen limitation, suggesting this metabolic flexibility may confer growth and survival advantages. In this work, we provide evidence that, in adopting a mixotrophic growth strategy, the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1 changes its growth rate, biomass yields and the production of intracellular glycogen reservoirs. Under nitrogen-fixing conditions, removal of hydrogen from the feed-gas resulted in a 14 % reduction in observed growth rates and a 144% increase in cellular glycogen content. Concomitant with increases in glycogen content, the total protein content of biomass decreased following the removal of hydrogen. Transcriptome analysis of Methylacidiphilum sp. RTK17.1 revealed a 3.5-fold upregulation of the Group 1d [NiFe] hydrogenase in response to oxygen limitation and a 4-fold upregulation of nitrogenase encoding genes (nifHDKENX) in response to nitrogen limitation. Genes associated with glycogen synthesis and degradation were expressed constitutively and did not display evidence of transcriptional regulation. Collectively these data further challenge the belief that hydrogen metabolism in methanotrophic bacteria is primarily associated with energy conservation during nitrogen fixation and suggests its utilisation provides a competitive growth advantage within hypoxic habitats.
Project description:Connecting genes to phenotypic traits in bacteria is often challenging because of a lack of environmental cues in laboratory settings. However, laboratory-based model ecosystems offer a means to better account for natural conditions compared to standard planktonic cultures, aiding in the linking of genotypes and phenotypes. Here, we present a simple, cost-effective, laboratory-based model ecosystem to study aerobic methane-oxidizing bacteria (methanotrophs). This system, referred to as the gradient syringe, is made by inoculating bacteria into semi-solid agarose held within a disposable syringe. Empty space at one end of the syringe is flushed with methane gas, while the other end is open to the atmosphere through a sterile filter. We show this system replicates the methane-oxygen counter gradient typically found in the natural soil environment of methanotrophs. Culturing the methanotroph Methylomonas sp. strain LW13 in this system produced a distinct horizontal band at the intersection of the counter gradient, which we discovered was due not to increased cell growth at this location but instead to an increased amount of extracellular polymeric substances (EPS). We also discovered that different methanotrophic taxa formed EPS bands with distinct locations and morphologies when grown in the methane-oxygen counter gradient. By comparing transcriptomic data from LW13 growing within and surrounding this EPS band, we identified genes implicated in cell growth and EPS formation within the gradient syringe, and validated the involvement of these genes with knockout strains. This work highlights the use of a laboratory-based model ecosystem that more closely mimics the natural environment to uncover methanotroph phenotypes missing from standard planktonic cultures, and link these phenotypes their genetic determinants.
Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
Project description:Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Despite this important environmental role, little is known about the molecular details of how these organisms interact in the environment. Many bacterial species use quorum sensing systems to regulate gene expression in a density-dependent manner. We have identified a quorum sensing system in the genome of Methylobacter tundripaludum, a dominant methane-oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA, USA). We determined that M. tundripaludum primarily produces N-3-hydroxydecanoyl-L-homoserine lactone (3-OH-C10-HSL) and that production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by quorum sensing in this methane-oxidizer using RNA-seq, and discovered this system regulates the expression of a novel nonribosomal peptide synthetase biosynthetic gene cluster. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium.
Project description:Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Despite this important environmental role, little is known about the molecular details of how these organisms interact in the environment. Many bacterial species use quorum sensing systems to regulate gene expression in a density-dependent manner. We have identified a quorum sensing system in the genome of Methylobacter tundripaludum, a dominant methane-oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA, USA). We determined that M. tundripaludum primarily produces N-3-hydroxydecanoyl-L-homoserine lactone (3-OH-CÂ10-HSL) and that production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by quorum sensing in this methane-oxidizer using RNA-seq, and discovered this system regulates the expression of a novel nonribosomal peptide synthetase biosynthetic gene cluster. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium. Samples are 2 sets of biological replicates of a Methylobacter tundripaludum strain 21/22 mutant where the acyl-homoserine lactone (AHL) synthase gene mbaI (T451DRAFT_0796) has been deleted. The mutant strain was grown to log (48 hours) or stationary (68 hours) phase in the absence or presence of the AHL 3-OH-C10-HSL.
Project description:Methane oxidation by aerobic methanotrophs is well-known to be strongly regulated by the availability of copper, i.e., the “copper-switch”. That is, there are two forms of the methane monooxygenase: a cytoplasmic or soluble methane monooxygenase (sMMO) and a membrane-bound or particulate methane monooxygenase (pMMO). sMMO is only expressed and active in the absence of copper, while pMMO requires copper. Previous work has also shown that one gene in the operon of the soluble methane monooxygenase – mmoD – also plays a critical role, but its function is still vague. Herein we show that MmoD is not needed for expression of genes in the sMMO gene cluster but is critical for formation of sMMO polypeptides and sMMO activity in Methylosinus trichosporium OB3b, indicating that MmoD plays a key post-transcriptional role in maturation of sMMO. Further, data also show that MmoD controls expression of methanobactin, a unique copper-binding compound used by some methanotrophs for copper collection. Collectively these results provide greater insights into the components of the “copper-switch” and thus provide new strategies to manipulate methanotrophic activity.
Project description:Natural and anthropogenic wetlands are main sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic microorganisms and by processes at the oxic-anoxic interface, such as sulfur cycling, that reduce the activity of methanogens. In this study, we obtained a pure culture (strain HY1) of a versatile wetland methanotroph that oxidizes various organic and inorganic compounds. This strain represents (i) the first isolate that can aerobically oxidize both methane and reduced sulfur compounds and (ii) a new alphapoteobacterial species, named Candidatus Methylovirgula thiovorans. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are the only enzymes for methane and methanol oxidation, respectively. Unexpectedly, strain HY1 harbors various pathways for respiratory sulfur oxidation and oxidized reduced sulfur compounds to sulfate using the Sox-rDsr pathway (without SoxCD) and the S4I system. It employed the Calvin-Benson-Bassham cycle for CO2 fixation during chemolithoautotrophic growth on the reduced sulfur compounds. Methane and thiosulfate were independently and simultaneously oxidized by strain HY1 for growth. Proteomic and microrespiratory analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of their substrates. The discovery of this versatile methanotroph demonstrates that methanotrophy and thiotrophy is compatible in a single bacterium and adds a new aspect to interactions of methane and sulfur cycles in oxic-anoxic interface environments.