Project description:Study the effect of PARP-14 and its activity on Th2 differentiation ChIP seq was performed on Th2 differentiated cells isolated from PARP-14 +/+ and PARP-14 -/- treated with or without PJ34
Project description:PARP-14, a member of the poly ADP-ribose polymerase super family, promotes T helper cell 2 (Th2) differentiation by regulating interleukin-4 (IL-4) and STAT6-dependent transcription. Yet, whether PARP-14 globally impacts gene regulation has not been determined. In this report, using an RNA pol II ChIP-seq approach, we identify genes in Th2 cells that are regulated by PARP-14, and either dependent or independent of ADP-ribosyltransferase catalytic activity. Our data demonstrate that PARP-14 enhances the expression of Th2 genes as it represses the expression of Th1-associated genes. Among the relevant targets are Signal Transducer and Activator of Transcription genes required for polarizing Th1 and Th2 cells. To define a mechanism for PARP-14 function, we use an informatics approach to identify putative PARP-14 DNA binding sites. Two putative PARP-14 binding motifs are identified in multiple Th2 cytokine genes, and we demonstrate that PARP-14 interacts with each motif using in vitro binding assays. Taken together our results indicate that PARP-14 is an important factor for T helper cell differentiation and it binds to specific DNA sequences to mediate its function.
Project description:Poly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme; however, recently metabolic properties had been attributed to it. Hereby, we examined the metabolic consequences of PARP-2 ablation in liver. Microarray analysis of PARP-2 knockdown HepG2 cells revealed the dysregulation of lipid and cholesterol metabolism genes. Induction of cholesterol biosynthesis genes stemmed from the enhanced expression of sterol-regulatory element binding protein (SREBP)-1. We revealed that PARP-2 is a suppressor of the SREBP-1 promoter, therefore ablation of PARP-2 induces SREBP-1 expression and consequently cholesterol synthesis. PARP-2-/- mice had higher SREBP-1 expression that was translated into enhanced hepatic and serum cholesterol levels. PARP-2 silencing was performed employing shPARP-2 (small hairpin) and scPARP-2 (scrambled) shRNA by lentiviral delivery (Sigma) using 40 MOI lentiviruses coding shRNA sequence against PARP-2.
Project description:Adenylate cyclase signaling pathway is suggested to be a key regulator of immune system functions. However, specific effects of cyclic adenosine monophosphate on T helper cell differentiation and functions are unclear. Involvement of cAMP in Th cell differentiation program, in particular development of Th1, Th2, and Th17 subsets, was evaluated employing forskolin (FSK), a labdane diterpene well known as AC activator.
Project description:We are examining the consequences of activating mutations in PI3K-delta in Th1 vs. Th2 differentiation. Using the house dust mite (HDM) model of allergic airway inflammation, which drives potent Th2 responses in vivo, we have found mice expressing hyper-activated PI3K-delta show impaired Th2 differentiation and instead favor Th1 cell differentiation. We would like to further investigate this aberrant CD4 differentiation profile using scRNA-seq to characterize PI3K-delta regulated aspects of type II immunity.
Project description:Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer. PARP-1 activation mechanism by CDK2 in response of progestin in breast cancer cells