Gene expression in human lymphoblastoid cell-line GM12878 in response to doxorubicin treatment
Ontology highlight
ABSTRACT: To determine if induced p53 binding is associated with gene expression in genome-wide. We examined mRNA levels with the Affymetrix Human Exon 1.0 ST platform in human lymphoblastoid GM12878 cells treated with doxorubicin to activate p53. In response to various cellular stresses, the tumor suppressor gene p53 induces activation or repression of more than a thousand human genes. Selective binding and transactivation of a large potential pool of p53 response elements (REs) is believed to regulate the variation in stress response across stress types and between cell types. To elucidate how the human genome is targeted by p53 at the chromatin level, we mapped the genome-wide localization of p53 and H3K4me3 from Doxo-treated human lymphoblastoid cells, and examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 Hypersensitivity, DHS), ENCODE chromatin states, RE sequence specificity and evolutionary conservation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE51709 | GEO | 2014/11/14
SECONDARY ACCESSION(S): PRJNA224609
REPOSITORIES: GEO
ACCESS DATA