Toxoplasma gondii merozoite gene expression
Ontology highlight
ABSTRACT: Background: Considerable work has been carried out to understand the biology of the intermediate stages, the tachyzoite and bradyzoite, of Toxoplasma gondii in large part due to the accessible culturing methods for these stages. However, culturing methods for stages beyond the bradyzoite, including the merozoite and sexual stages, have not been developed hindering the ability to study a large portion of the parasite’s life cycle. We begin to unravel the molecular aspects of the merozoite stage focusing on gene expression. Results: To initiate this, we harvested merozoite parasites and hybridized mRNA to the Affymetrix Toxoplasma GeneChip. We analyzed the merozoite data in context of the life cycle by combining it with a previously published study that generated array data for the oocyst, tachyzoite, and bradyzoite stages (Fritz HM et al. PLoS One, 2012). Principal component analysis highlights the unique profile of the merozoite samples, placing them approximately half-way on a continuum between the tachyzoite/bradyzoite and oocyst samples. Prior studies have shown that antibodies to surface antigen p30 (SAG1) and many dense granule proteins do not label merozoites, and our microarray data confirms that these genes are not expressed at this stage. Also, the expression for many rhoptry and microneme proteins is drastically reduced while the expression for many surface antigens is increased at the merozoite stage. Gene Ontology and KEGG analysis reveals that genes involved in transcription/translation and many metabolic pathways are upregulated at the merozoite stage, highlighting unique growth requirements of this stage. We also show that an upstream promoter region of a merozoite specific gene is sufficient to control stage specific expression at the merozoite stage. Conclusion: The merozoite represents the first developmental stage within the gut of the definitive host. Determining the correct conditions that coax the parasite into the merozoite stage in vitro may allow the parasite to complete sexual development. The data presented here describe the global gene expression profile of merozoite stage and the creation of transgenic parasite strains that will be useful in unlocking how the parasite senses and responds to the felid gut environment to initiate coccidian development.
ORGANISM(S): Toxoplasma gondii
PROVIDER: GSE51780 | GEO | 2014/05/02
SECONDARY ACCESSION(S): PRJNA225020
REPOSITORIES: GEO
ACCESS DATA