Project description:Characterization of RCI1A role in the control of the response to low temperature of cold induced genes. Two-condition experiment, rci1a vs. WT plants. Biological replicates: 3 aclimated and 3 control replicates.
Project description:Our study showed that the CHD3 protein PKL plays a role in the regulation of cold stress response likely via the regulation of chlorophyll accumulation under low temperature conditions. Our results suggest that PKL may regulate cold response partly via a CBF3-mediated pathway. Besides, our results reveal that the PKL gene is also involved in the regulation of drought and salt stress resistance.
Project description:Low temperature is one of the major abiotic stresses limiting rice growth and productivity, it is urgent to reveal the genetic and molecular mechanisms of plant responses to low temperature stress and to search for useful genetic resources for improving low-temperature tolerance. the 8 accessions from China Core Collection include 4 cold tolerance accessions, 3 sensitivity accessions and 1 intermediate type accession. We used microarrays to detail variation of the gene expression after cold treatment and screen more cold-response genes in rice.
Project description:The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light-quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in one-month-old Arabidopsis thaliana (Col‐0) plants exposed for one week to 4 °C at short‐day conditions under white (100 and 20 μmol m‐2s‐1), blue or red (20 μmol m‐2s‐1) light conditions. An upregulated expression of CBF1, an inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accessions, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light treated plants at low temperature and showed that the cold response is highly accession specific. In general, blue light increased mainly the cold-stress related proteins and red light induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light driven cell function maintaining program and blue light activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Project description:Oil rapeseed (Brassica napus L.) is a typical winter biennial plant, with high cold tolerance during vegetative stage. In recent years, more and more early-maturing rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. Little is known about the molecular mechanisms for coping with different low-temperature stress conditions in rapeseed. In this study, we investigated 47,328 differentially expressed genes (DEGs) of two early-maturing rapeseed varieties with different cold tolerance treated with cold shock at chilling (4°C) and freezing (−4°C) temperatures, as well as chilling and freezing stress following cold acclimation or control conditions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two conserved (the primary metabolism and plant hormone signal transduction) and two novel (plant-pathogen interaction pathway and circadian rhythms pathway) signaling pathways were significantly enriched with differentially-expressed transcripts. Our results provided a foundation for understanding the low-temperature stress response mechanisms of rapeseed. We also propose new ideas and candidate genes for genetic improvement of rapeseed tolerance to cold stresses.
Project description:To stabilize crop yield under low temperature stress conditions, it is important to improve stress tolerance in crops. Upon exposure to low temperature stress, many genes are induced and their products are thought to function as cellular protectants of stress-induced damages Therefore, responses of global gene expression profiles to cold stress was analyzed at the booting stage using the 60K Rice Whole Genome Microarray.
Project description:Purpose: Rice (Oryza sativa) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the roots of two rice genotypes (CT, cold-tolerant; and CS, cold-sensitive) in response to low temperature stress during the early vegetative stage. Results: RNAseq analysis revealed that contrasting genotypes present a completely different molecular response to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes that might contribute to rice cold tolerance, including the ones related with cell wall remodeling (glycosyl hydrolase, cellulose synthase, glycosyl transferase, wall-associated kinase, glycine-rich cell wall structural protein), cytoskeleton and growth (microtubule-associated protein 70, kinesin motor domain containing protein, growth regulating factor protein, auxin-independent growth promoter protein, RopGEF7), signaling (receptor-like protein kinase, Rapid Alkalinization Factor 21)), antioxidant system (glutathione peroxidase, metallothionein), lipid metabolism (fatty acid desaturase and phosphatidylinositol transfer protein), and stress response (Tetratricopeptide Repeat-Containing Protein). On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Even though these two genotypes have a similar genetic background (sister lines), some of these genes can probably be involved with cold tolerance or sensitivity and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.
Project description:Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It produces flavor compounds over the whole ripening period. During cheese ripening, P. freudenreichii is exposed to a temperature downshift, especially when cheeses are transferred from warm temperature (about 24°C) to cold temperature (about 4°C). The aim of this study was to investigate the adaptation of P. freudenreichii at cold temperature by means of the first global gene expression profile for this species. The temporal transcriptomic response of P. freudenreichii was analyzed at five times of growth, during growth at 30°C then for 9 days at 4°C, in the constant presence of lactate as the main carbon source. P. freudenreichii response was also investigated by RT-qPCR for 30 genes, by proteomics and metabolomics (main metabolites quantified in culture supernatant). Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from warm to cold temperature (P < 0.05 and |fold change| > 1). Most of the down-expressed genes were involved in cell machinery (cell division, protein turnover, translation, transcription and DNA replication). During incubation at cold temperature, P. freudenreichii accumulated carbon supplies by up-regulating genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis and in glycogen synthesis. Interestingly, some genes involved in the formation of important flavor compounds of cheese, coding for an extracellular lipolytic esterases and enzymes of the pathways of formation of branched-chain compounds, were not significantly affected by cold. In conclusion, P. freudenreichii is metabolically active at cold temperature and induces pathways to maintain its long-term viability, which could explain its contribution to cheese ripening even at low temperature.
Project description:A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify cold-responsive genes that might be involved in tolerance to long low temperature storage. Peach fruit from ‘Morettini No2’ and ‘Royal Glory’, a sensitive and a tolerant, to chilling injury cultivars, respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (25°C) or subjected to 4 and 6-weeks of cold storage (0°C, 95% R.H.) followed by ripening at room temperature. Microarray experiments, employing the peach microarray platform (μ PEACH 1.0), were carried out by comparing harvested fruit against 4- and 6-week cold-stored fruit. The analysis identified 173 and 313 genes that were differentially expressed in ‘Morettini No2’ and ‘Royal Glory’ fruit after 4 weeks, respectively. However, the 6 weeks cold storage provoked a decrease in the total number of genes differentially expressed in both cultivars. RNA blot analysis validated the differential expression of certain genes showed in microarray data. Among these genes, two heat shock proteins (hsps), a putative β-D-xylosidase, an expansin, a dehydrin and a pathogenesis-related protein PR-4B precursor were induced during cold storage in both cultivars. The induction of hsps and the putative β-D-xylosidase appeared to be independent on the duration of postharvest treatment. On the other hand, transcript levels of lipoxygenase were quite constant during postharvest ripening, while a strong reduction or disappearance was observed after cold storage. A dehydration-induced RD22-like protein showed a reduction in the accumulation of transcripts during postharvest ripening independently on the temperature conditions. Overall, the current study shed some light on the molecular aspects of cold stress in peach fruit quality and identified some ripening and/or cold-induced genes which function need further elucidation.