Project description:UnlabelledEpigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to monoubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity does not require its catalytic activity nor does it derive from its canonical gene repression function. Instead, RNF2 drives proliferation through direct transcriptional upregulation of the cell-cycle regulator CCND2. We further show that MEK1-mediated phosphorylation of RNF2 promotes recruitment of activating histone modifiers UTX and p300 to a subset of poised promoters, which activates gene expression. In summary, RNF2 regulates distinct biologic processes in the genesis and progression of melanoma via different molecular mechanisms.SignificanceThe role of epigenetic regulators in cancer progression is being increasingly appreciated. We show novel roles for RNF2 in melanoma tumorigenesis and metastasis, albeit via different mechanisms. Our findings support the notion that epigenetic regulators, such as RNF2, directly and functionally control powerful gene networks that are vital in multiple cancer processes.
Project description:Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of gain of function and loss of function studies, we establish that RNF2 is oncogenic and pro-metastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to mono-ubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity did not require its catalytic activity nor derives from its canonical gene repression function, rather RNF2 drives proliferation through direct transcriptional up-regulation of the cell cycle regulator CCND2. In summary, RNF2 regulates distinct biological processes in the genesis and progression of melanoma via distinct molecular mechanisms, underscoring the complex and multi-faceted actions of epigenetic regulators in cancer. RNF2 is overexpressed in immortalized human melanocytes HMEL-BRAFV600E to address impact of RNF2 overexpression in melanoma. GFP was overexpressed in HMEL-BRAFV600E cells as a control cell line. Expression profiling using microarray was performed and compared between RNF2 overexpressing versus GFP overexpressing HMEL-BRAFV600E cells.
Project description:Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of gain of function and loss of function studies, we establish that RNF2 is oncogenic and pro-metastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to mono-ubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity did not require its catalytic activity nor derives from its canonical gene repression function, rather RNF2 drives proliferation through direct transcriptional up-regulation of the cell cycle regulator CCND2. In summary, RNF2 regulates distinct biological processes in the genesis and progression of melanoma via distinct molecular mechanisms, underscoring the complex and multi-faceted actions of epigenetic regulators in cancer.
Project description:Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of gain of function and loss of function studies, we establish that RNF2 is oncogenic and pro-metastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to mono-ubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity did not require its catalytic activity nor derives from its canonical gene repression function, rather RNF2 drives proliferation through direct transcriptional up-regulation of the cell cycle regulator CCND2. In summary, RNF2 regulates distinct biological processes in the genesis and progression of melanoma via distinct molecular mechanisms, underscoring the complex and multi-faceted actions of epigenetic regulators in cancer. RNF2 is overexpressed in immortalized human melanocytes HMEL-BRAFV600E to address impact of RNF2 overexpression in melanoma and identify RNF2 target genes. ChIP was performed to identify RNF2 binding sites using antibody against the V5 tag.
Project description:Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of gain of function and loss of function studies, we establish that RNF2 is oncogenic and pro-metastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to mono-ubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity did not require its catalytic activity nor derives from its canonical gene repression function, rather RNF2 drives proliferation through direct transcriptional up-regulation of the cell cycle regulator CCND2. In summary, RNF2 regulates distinct biological processes in the genesis and progression of melanoma via distinct molecular mechanisms, underscoring the complex and multi-faceted actions of epigenetic regulators in cancer.