Project description:Comparison of translation efficiency in S. cerevisiae, S. paradoxus, and their F1 hybrid. SRA submission number SRP028552; BioProject number PRJNA213844; Ribosome profiling was used to compare mRNA abundance, ribosome occupancy, and translation efficiency in two yeast species and their F1 hybrid.
Project description:Ribosome profiling performed on interspecific hybrids of Sacharromyces cerevisiae and S. paradoxus in order to identify allele-specific expression indicative of cis-regulatory divergence at the level of mRNA abundance and protein translation.
Project description:Multi-genome, time series transcriptome measurements across the budding yeast cell cycle 378 genome-wide microarray measurements, 18 timepoints, nine strains of S. cerevisiae and one strain of S. paradoxus
Project description:Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign. There are 20 samples in total. These consist of 10 FAIRE-seq samples, specifically 6 haploid samples, S. cerevisiae strain UWOPS05_217_3 replicates 1 and 2, S. cerevisiae strain DBVPG1373 replicates 1 and 2, and S. paradoxus strain CBS432 replicates 1 and 2. There are also 4 diploid hybrid samples, hybrid between S. cerevisiae strain UWOPS05_217_3 and S. paradoxus strain CBS432 replicates 1 and 2, and the hybrid between S. cerevisiae strain DBVPG1373 and S. paradoxus strain CBS432 replicates 1 and 2. There are also RNA-seq samples for each of these 10 samples.
Project description:Multi-genome, time series transcriptome measurements across the budding yeast cell cycle 378 genome-wide microarray measurements, 18 timepoints, nine strains of S. cerevisiae and one strain of S. paradoxus Dye-swap technical replication at each strain,timepoint pair in a common reference design
Project description:Ribosome profiling performed on interspecific hybrids of Sacharromyces cerevisiae and S. paradoxus in order to identify allele-specific expression indicative of cis-regulatory divergence at the level of mRNA abundance and protein translation. Two biological replicate libraries sequenced from ribosome protected fragments as well as poly-A-selected mRNA of hybrids in addition to one biological replicate library of poly-A selected mRNA from each parental strain.
Project description:We profiled the transcriptomes of four Saccharomyces species, as well as pairwise hybrids between three of the species with S. cerevisiae For pairwise comparisons between Saccharomyces cerevisiae and each of S. paradoxus, S. mikatae, and S. bayanus, we performed 3'-end RNA-seq on RNA from each parent species and each interspecific hybrid.
Project description:Changes in gene regulation rapidly accumulate between species and may contribute to reproductive isolation through misexpression of genes in interspecific hybrids. Hybrid misexpression, defined by expression levels outside the range of both parental species, is thought to be a result of cis- and trans-acting regulatory changes that interact in the hybrid, or arise from changes in the relative abundance of various tissues or cell types due to defects in developmental. Here, we show that misexpressed genes in a sterile interspecific Saccharomyces yeast hybrid result from a heterochronic shift in the timing of the normal meiotic gene expression program. By tracking nuclear divisions, we find that S. cerevisiae initiates meiosis earlier than its closest known relative, S. paradoxus, yet both species complete meiosis at the same time. Although the hybrid up- and down-regulates genes in a similar manner to both parents, the hybrid meiotic program occurs earlier than both parents. The timing shift results in a heterochronic pattern of misexpression throughout meiosis I and the beginning of meiosis II. Coincident with the timing of misexpression, we find an increase in the relative abundance of opposing cis and trans-acting changes and compensatory changes, as well as a transition from predominantly trans-acting to cis-acting expression divergence over the course of meiosis. However, misexpression does not appear to be a direct consequence of cis- and trans-acting regulatory divergence. Our results demonstrate that hybrid misexpression in yeast results from a heterochronic shift in the meiotic gene expression program. We analyzed three biological replicates of the parental yeast strains, S. cerevisiae and S. paradoxus, and four replicates of their hybrid over four developmental time points. Two hybrid replicates contain MATa from S. cerevisiae and MATalpha from S. paradoxus. The other two hybrid replicates are reciprocal crosses. The developmental time points are T0, which serves as a control, and is the moment cells enter sporulation media. M1 is the beginning of meiosis I. M1/M2 is the overlap of the end of meiosis I and the beginning of meiosis II. M2 is the end of meiosis II.
Project description:We compared the genome-wide expression profiles of two yeast species (S. cerevisiae and S. paradoxus) using a two-species microarray that contain species-specific probes and can thus measure the expression levels of the two species simultaneosly. In Addition, we used the array to measure expression levels of the interspecific hybrid of these yeast species, while discriminating between the alleles that correspond to the two parental species. Comparison of the between-species differences and the within-hybrid allele differences allows us to separate cis from trans effects. Also, comparison of the overall expression in the hybrids (both alleles) with their parental species allows us to analyze hybrid over-expression and under-expression. Keywords: comparative transcriptome analysis, hybrid gene expression