Generation and characterization of a tomato DCL3 silencing mutant
Ontology highlight
ABSTRACT: DICER-like 3 (DCL3) is a major player in heterochromatic 24-nucleotide siRNA and long miRNA biogenesis and mutants have been characterized from Arabidopsis and rice. Here, a tomato DCL3 mutant was generated through the use of trans-activated artificial microRNA and characterized. Global tomato DCL3 (SlDCL3) silencing was induced by crossing the generated responder line (OP:amiRDCL3) with constitutive driver line. Constitutive trans-activation knocked down SlDCL3 levels by ~77%, resulting in dramatically decreased 24-nucleotide small RNA levels, but a significant increase in 21- and 22- nucleotide small RNAs, which was correlated with specific upregulation of SlDCL4 and SlDCL2b. Moreover, in the majority of small RNA-generating loci an almost complete overlap between the control and 35S>>amiRSlDCL3 siRNA signatures, was observed, strongly suggesting that the reduction in 24-nucleotide siRNAs was compensated by increased biogenesis of 21-22 nt siRNAs from the same genomic sequences. Collectively, these results suggest the requirement of SlDCL3 for the biogenesis of 23-24 nt sRNAs and its substitution by SlDCL4 and SlDCL2b, which function in the biogenesis of 21- and 22-nt small RNAs. In addition, differential expression between control and SlDCL3-silenced small RNAs indicated a significant reduction in the abundance of 24-nt putative long miRNAs, which was validated by northern blots, implicating SlDCL3 in their biogenesis.
Project description:DICER-like 3 (DCL3) is a major player in heterochromatic 24-nucleotide siRNA and long miRNA biogenesis and mutants have been characterized from Arabidopsis and rice. Here, a tomato DCL3 mutant was generated through the use of trans-activated artificial microRNA and characterized. Global tomato DCL3 (SlDCL3) silencing was induced by crossing the generated responder line (OP:amiRDCL3) with constitutive driver line. Constitutive trans-activation knocked down SlDCL3 levels by ~77%, resulting in dramatically decreased 24-nucleotide small RNA levels, but a significant increase in 21- and 22- nucleotide small RNAs, which was correlated with specific upregulation of SlDCL4 and SlDCL2b. Moreover, in the majority of small RNA-generating loci an almost complete overlap between the control and 35S>>amiRSlDCL3 siRNA signatures, was observed, strongly suggesting that the reduction in 24-nucleotide siRNAs was compensated by increased biogenesis of 21-22 nt siRNAs from the same genomic sequences. Collectively, these results suggest the requirement of SlDCL3 for the biogenesis of 23-24 nt sRNAs and its substitution by SlDCL4 and SlDCL2b, which function in the biogenesis of 21- and 22-nt small RNAs. In addition, differential expression between control and SlDCL3-silenced small RNAs indicated a significant reduction in the abundance of 24-nt putative long miRNAs, which was validated by northern blots, implicating SlDCL3 in their biogenesis. Examination of small RNA populations in control (35S:LhG4) and SlDCL3 silenced seedlings (35S>>amiRSlDCL3) 2 biological replicates each
Project description:In plants, the biogenesis of 24 nt and 23 nt small interfering RNAs (siRNAs) requires NUCLEAR RNA POLYMERASE IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). We show that single-stranded M13 bacteriophage DNA can be used as a template for siRNA synthesis in vitro. Deep sequencing of RNAs produced from the in vitro reactions of Pol IV, RDR2 and DCL3 shows that Pol IV transcribes the DNA into first-strand RNAs which RDR2 then uses as templates to synthesize complementary second strands. These siRNA precursor transcripts made by Pol IV and RDR2 are mostly 30-50 nt. An untemplated 3' terminal nucleotide is a characteristic of RDR2 transcripts. DCL3 dicing of double-stranded precursor RNAs synthesized by Pol IV and RDR2 generates siRNAs that are mostly 24 nt, with a smaller population of 23 nt also produced.
Project description:Small interfering RNAs (siRNAs) are critical for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21-, 22-, or 24- nucleotides (nt), wherein the 21- and 24-nt siRNAs mediate mRNA cleavage and DNA methylation2,3, respectively. However, the biological functions of 22-nt siRNAs remain elusive. Here we report the identification and characterization of a group of endogenous 22-nt siRNAs generated from the action of DICER-LIKE 2 (DCL2). When cytoplasmic RNA decay and DCL4 are deficient, the massive accumulation of 22-nt siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defect, and pigmentation. Notably, two genes that encode nitrate reductases, NIA1 and NIA2, produce nearly half of the total of 22-nt siRNAs. Production of 22-nt siRNA triggers explosive self-amplification that leads to a small RNA storm, and induces dramatic translational repression both gene-specifically and globally. 22-nt siRNAs are also found to preferentially accumulate upon nitrogen deficiency, which acts to restrain plant growth and promote stress responses. Thus, our research uncovers the unique properties of 22-nt siRNAs, a previously unexplored class of plant siRNAs, and highlights the length of small RNA as a major functional determinant.
Project description:Small interfering RNAs (siRNAs) are critical for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21-, 22-, or 24- nucleotides (nt), wherein the 21- and 24-nt siRNAs mediate mRNA cleavage and DNA methylation2,3, respectively. However, the biological functions of 22-nt siRNAs remain elusive. Here we report the identification and characterization of a group of endogenous 22-nt siRNAs generated from the action of DICER-LIKE 2 (DCL2). When cytoplasmic RNA decay and DCL4 are deficient, the massive accumulation of 22-nt siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defect, and pigmentation. Notably, two genes that encode nitrate reductases, NIA1 and NIA2, produce nearly half of the total of 22-nt siRNAs. Production of 22-nt siRNA triggers explosive self-amplification that leads to a small RNA storm, and induces dramatic translational repression both gene-specifically and globally. 22-nt siRNAs are also found to preferentially accumulate upon nitrogen deficiency, which acts to restrain plant growth and promote stress responses. Thus, our research uncovers the unique properties of 22-nt siRNAs, a previously unexplored class of plant siRNAs, and highlights the length of small RNA as a major functional determinant.
Project description:Small interfering RNAs (siRNAs) are critical for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21-, 22-, or 24- nucleotides (nt), wherein the 21- and 24-nt siRNAs mediate mRNA cleavage and DNA methylation2,3, respectively. However, the biological functions of 22-nt siRNAs remain elusive. Here we report the identification and characterization of a group of endogenous 22-nt siRNAs generated from the action of DICER-LIKE 2 (DCL2). When cytoplasmic RNA decay and DCL4 are deficient, the massive accumulation of 22-nt siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defect, and pigmentation. Notably, two genes that encode nitrate reductases, NIA1 and NIA2, produce nearly half of the total of 22-nt siRNAs. Production of 22-nt siRNA triggers explosive self-amplification that leads to a small RNA storm, and induces dramatic translational repression both gene-specifically and globally. 22-nt siRNAs are also found to preferentially accumulate upon nitrogen deficiency, which acts to restrain plant growth and promote stress responses. Thus, our research uncovers the unique properties of 22-nt siRNAs, a previously unexplored class of plant siRNAs, and highlights the length of small RNA as a major functional determinant.
Project description:Small interfering RNAs (siRNAs) are critical for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21-, 22-, or 24- nucleotides (nt), wherein the 21- and 24-nt siRNAs mediate mRNA cleavage and DNA methylation2,3, respectively. However, the biological functions of 22-nt siRNAs remain elusive. Here we report the identification and characterization of a group of endogenous 22-nt siRNAs generated from the action of DICER-LIKE 2 (DCL2). When cytoplasmic RNA decay and DCL4 are deficient, the massive accumulation of 22-nt siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defect, and pigmentation. Notably, two genes that encode nitrate reductases, NIA1 and NIA2, produce nearly half of the total of 22-nt siRNAs. Production of 22-nt siRNA triggers explosive self-amplification that leads to a small RNA storm, and induces dramatic translational repression both gene-specifically and globally. 22-nt siRNAs are also found to preferentially accumulate upon nitrogen deficiency, which acts to restrain plant growth and promote stress responses. Thus, our research uncovers the unique properties of 22-nt siRNAs, a previously unexplored class of plant siRNAs, and highlights the length of small RNA as a major functional determinant.
Project description:Small interfering RNAs (siRNAs) are critical for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21-, 22-, or 24- nucleotides (nt), wherein the 21- and 24-nt siRNAs mediate mRNA cleavage and DNA methylation2,3, respectively. However, the biological functions of 22-nt siRNAs remain elusive. Here we report the identification and characterization of a group of endogenous 22-nt siRNAs generated from the action of DICER-LIKE 2 (DCL2). When cytoplasmic RNA decay and DCL4 are deficient, the massive accumulation of 22-nt siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defect, and pigmentation. Notably, two genes that encode nitrate reductases, NIA1 and NIA2, produce nearly half of the total of 22-nt siRNAs. Production of 22-nt siRNA triggers explosive self-amplification that leads to a small RNA storm, and induces dramatic translational repression both gene-specifically and globally. 22-nt siRNAs are also found to preferentially accumulate upon nitrogen deficiency, which acts to restrain plant growth and promote stress responses. Thus, our research uncovers the unique properties of 22-nt siRNAs, a previously unexplored class of plant siRNAs, and highlights the length of small RNA as a major functional determinant.
Project description:Small interfering RNAs (siRNAs) are critical for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21-, 22-, or 24- nucleotides (nt), wherein the 21- and 24-nt siRNAs mediate mRNA cleavage and DNA methylation2,3, respectively. However, the biological functions of 22-nt siRNAs remain elusive. Here we report the identification and characterization of a group of endogenous 22-nt siRNAs generated from the action of DICER-LIKE 2 (DCL2). When cytoplasmic RNA decay and DCL4 are deficient, the massive accumulation of 22-nt siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defect, and pigmentation. Notably, two genes that encode nitrate reductases, NIA1 and NIA2, produce nearly half of the total of 22-nt siRNAs. Production of 22-nt siRNA triggers explosive self-amplification that leads to a small RNA storm, and induces dramatic translational repression both gene-specifically and globally. 22-nt siRNAs are also found to preferentially accumulate upon nitrogen deficiency, which acts to restrain plant growth and promote stress responses. Thus, our research uncovers the unique properties of 22-nt siRNAs, a previously unexplored class of plant siRNAs, and highlights the length of small RNA as a major functional determinant.
Project description:In plants, the known microRNAs (miRNAs) are produced as ~21 nucleotide (nt) duplexes from their precursors by Dicer like 1 (DCL1). They are incorporated into Argonaute 1 (AGO1) protein to regulate target gene expression primarily through mRNA cleavage. We report here the discovery of a new class of miRNAs in the model monocot rice (Oryza sativa). These are 24 nt in length and require another member of the Dicer family, DCL3, for their biogenesis. The 24 nt long miRNAs (lmiRNAs) are loaded into AGO4 clade proteins according to hierarchical rules, depending on the upstream biogenesis machinery and the 5’ terminal nucleotide. We demonstrated that lmiRNAs direct DNA methylation at loci from which they are produced as well as in trans at their target genes and play roles in gene regulation. Considered together, our findings define a novel miRNA pathway that mediates DNA methylation. Small RNAs were prepared from Rice total extract in wide type, dcl1, dcl3, rdr2 dbsRNA mutant and AGO4a, AGO4b, and AGO16 complexes, ligated to a 3' adaptor and a 5' acceptor sequentially, and then RT-PCR amplified. PCR products were reamplified using a pair of solexa cloning primers and then provided for sequencing. For technical details, see Wu, L., Zhang, Q., Zhou, H., Ni, F., Wu, X., and Qi, Y. (2009). Rice microRNA effector complexes and targets. The Plant Cell, 21: 3421-3435.
Project description:In eukaryotes, small RNAs (sRNAs) play critical roles in multiple biological processes. Dicer endonucleases are central to sRNA biogenesis. In plants, DICER-LIKE PROTEIN 3 (DCL3) produces 24-nt small interfering RNAs (siRNAs) that determine the specificity of the RNA-directed DNA methylation (RdDM) pathway. Here, we determined structure of a DCL3-pre-siRNA complex in an active dicing-competent state. The 5′-phosphorylated-A1 of the guide strand and the 1-nt 3′-overhang of the complementary strand are specifically recognized by a positively charged pocket and an aromatic cap, respectively. The 24-nt siRNA length dependence relies on the separation between the 5′-phosphorylated-end of the guide RNA and dual cleavage sites formed by the paired RNaseIII domains. These structural studies, complemented by functional data, reveal insights into the dicing principle for Dicers in general.