Project description:AimsEpidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we characterize the phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic changes induced by maternal diet in adult offspring.MethodsWe analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart. We then measured DNA methylation patterns in liver at selected loci and throughout the genome.ResultsMaternal diet had a significant effect on the body weight of the offspring when they were fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. We did not detect any effect of the maternal diet on DNA methylation in the liver.ConclusionsOverall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver.
Project description:Aims: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we aim to explore phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic alterations in adulthood induced by maternal diet. Methods: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart [GSE40903] . We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results: Maternal diet had a significant effect on the body weight of the offspring when they are fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. Maternal diet had no detectable effect on DNA methylation in the liver. Conclusions: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. Methylation is compared between nine week old animals fed a common diet as adults, but derived from mothers fed different diets.
Project description:Aims: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we aim to explore phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic alterations in adulthood induced by maternal diet. Methods: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart [GSE40903] . We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results: Maternal diet had a significant effect on the body weight of the offspring when they are fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. Maternal diet had no detectable effect on DNA methylation in the liver. Conclusions: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver.
Project description:Aims: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we aim to explore phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic alterations in adulthood induced by maternal diet. Methods: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart [GSE40903] . We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results: Maternal diet had a significant effect on the body weight of the offspring when they are fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. Maternal diet had no detectable effect on DNA methylation in the liver. Conclusions: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. Methylation is compared between nine week old animals fed a common diet as adults, but derived from mothers fed different diets. Sequence of PCR amplification of bisulfite converted genomic DNA of numerous loci
Project description:Aims: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we aim to explore phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic alterations in adulthood induced by maternal diet. Methods: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart [GSE40903] . We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results: Maternal diet had a significant effect on the body weight of the offspring when they are fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. Maternal diet had no detectable effect on DNA methylation in the liver. Conclusions: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver.
Project description:Maternal environmental exposures, such as high-fat diets, diabetes and obesity, can induce long-term effects in offspring. These effects include increased risk of neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), depression and anxiety. The mechanisms underlying these late-life neurologic effects are unknown. In this article, we measured changes in the offspring brain and determined which brain regions are sensitive to maternal metabolic milieu and therefore may mediate NDD risk. We showed that mice exposed to a maternal high-fat diet display extensive brain changes in adulthood despite being switched to a low-fat diet at weaning. Brain regions impacted by early-life diet include the extended amygdalar system, which plays an important role in reward-seeking behaviour. Genes preferentially expressed in these regions have functions related to feeding behaviour, while also being implicated in human NDDs, such as autism. Our data demonstrated that exposure to maternal high-fat diet in early-life leads to brain alterations that persist into adulthood, even after dietary modifications.
Project description:To determine the effects of maternal undernutrition (MUN) on the reproductive axis of aging offspring.Animal (rat) study.Research laboratory.Female Sprague-Dawley rats.Food restriction during the second half of pregnancy in rats.Circulating gonadotropins, antimüllerian hormone (AMH), ovarian morphology, estrous cyclicity, and gene expression studies in the hypothalamus and ovary in 1-day-old (P1) and aging adult offspring.Offspring of MUN dams had low birth weight (LBW) and by adult age developed obesity. In addition, 80% of adult LBW offspring had disruption of estrous cycle by 8 months of age, with the majority of animals in persistent estrous. Ovarian morphology was consistent with acyclicity, with ovaries exhibiting large cystic structures and reduced corpora lutea. There was an elevation in circulating T, increased ovarian expression of enzymes involved in androgen synthesis, an increase in plasma LH/FSH levels, a reduction in E2 levels, and no changes in AMH in adult LBW offspring compared with in control offspring. Hypothalamic expression of leptin receptor (ObRb), estrogen receptor-? (ER-?), and GnRH protein was altered in an age-dependent manner with increased ObRb and ER-? expression in P1 LBW hypothalami and a reversal of this expression pattern in adult LBW hypothalami.Our data indicate that the maternal nutritional environment programs the reproductive potential of the offspring through alteration of the hypothalamic-pituitary-gonadal axis. The premature reproductive senescence in LBW offspring could be secondary to the development of obesity and hyperleptinemia in these animals in adult life.
Project description:Increasing evidence suggests that undernutrition during the fetal period may lead to glucose intolerance, impair the insulin response and induce insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, the present study aimed to determine the effects of maternal low Cr (LC) on glucose metabolism in C57BL mice offspring, and the involved mechanisms. Weaned C57BL mice were born from mothers fed a control diet or LC diet, and were then fed a control or LC diet for 13 weeks. Subsequently, the liver microRNA (miRNA/miR) expression profile was analyzed by miRNA array analysis. A maternal LC diet increased fasting serum glucose (P<0.05) and insulin levels (P<0.05), homeostasis model assessment of IR index (P<0.01), and the area under curve for glucose concentration during oral glucose tolerance test (P<0.01). In addition, 8 upregulated and 6 downregulated miRNAs were identified in the maternal LC group (fold change ≥2, P<0.05). miRNA‑gene networks, Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed miRNAs, and miRNA overexpression in HepG2 cells revealed the critical role of insulin signaling, via miR‑327, miR‑466f‑3p and miR‑223‑3p, in the effects of early life Cr restriction on glucose metabolism. In conclusion, maternal Cr restriction may irreversibly increase IR, which may involve a specific miRNA affecting the insulin signaling pathway.
Project description:BackgroundEngineered nanoparticles are smaller than 100 nm and designed to improve or creating even new physico-chemical properties. Consequently, toxicological properties of materials may change as size reaches the nm size-range. We examined outcomes related to the central nervous system in the offspring following maternal inhalation exposure to nanosized carbon black particles (Printex 90).MethodsTime-mated mice (NMRI) were exposed by inhalation, for 45 min/day to 0, 4.6 or 37 mg/m3 aerosolized carbon black on gestation days 4-18, i.e. for a total of 15 days. Outcomes included maternal lung inflammation (differential cell count in bronchoalveolar lavage fluid and Saa3 mRNA expression in lung tissue), offspring neurohistopathology and behaviour in the open field test.ResultsCarbon black exposure did not cause lung inflammation in the exposed females, measured 11 or 28-29 days post-exposure. Glial fibrillary acidic protein (GFAP) expression levels were dose-dependently increased in astrocytes around blood vessels in the cerebral cortex and hippocampus in six weeks old offspring, indicative of reactive astrogliosis. Also enlarged lysosomal granules were observed in brain perivascular macrophages (PVMs) in the prenatally exposed offspring. The number of parvalbumin-positive interneurons and the expression levels of parvalbumin were decreased in the motor and prefrontal cortices at weaning and 120 days of age in the prenatally exposed offspring. In the open field test, behaviour was dose-dependently altered following maternal exposure to Printex 90, at 90 days of age. Prenatally exposed female offspring moved a longer total distance, and especially males spent significantly longer time in the central zone of the maze. In the offspring, the described effects were long-lasting as they were present at all time points investigated.ConclusionThe present study reports for the first time that maternal inhalation exposure to Printex 90 carbon black induced dose-dependent denaturation of PVM and reactive astrocytes, similarly to the findings observed following maternal exposure to Printex 90 by airway instillation. Of note, some of the observed effects have striking similarities with those observed in mouse models of neurodevelopmental disorders.