Project description:This SuperSeries is composed of the following subset Series: GSE5268: Effects of biphenyl on Rhodococcus sp. RHA1 GSE5269: Effects of ethylbenzene on Rhodococcus sp. RHA1 GSE5270: Effects of benzoate on Rhodococcus sp. RHA1 Refer to individual Series
Project description:Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC.
Project description:Rhodococcus sp. strain RHA1 is a gram-positive polychlorinated biphenyl (PCB) degrader which can degrade 10 ppm of PCB48 (equivalent to Aroclor1248), including tri-, tetra-, and pentachlorobiphenyls, in a few days. We isolated the 7.6-kb EcoRI-BamHI fragment carrying the biphenyl catabolic genes of RHA1 and determined their nucleotide sequence. On the basis of deduced amino acid sequence homology, we identified six bph genes, bphA1A2A3A4, bphB, and bphC, that are responsible for the initial three steps of biphenyl degradation. The order of bph genes in RHA1 is bphA1A2A3A4-bphC-bphB. This gene order differs from that of other PCB degraders reported previously. The amino acid sequences deduced from the RHA1 bph genes have a higher degree of homology with the tod genes from Pseudomonas putida F1 (49 to 79%) than with the bph genes of Pseudomonas sp. strains KF707 and KKS102 (30 to 65%). In Escherichia coli, bphA gene activity was not observed even when expression vectors were used. The activities of bphB and bphC, however, were confirmed by observing the transformation of biphenyl to a meta-cleavage compound with the aid of benzene dioxygenase activity that complemented the bphA gene activity (S. Irie, S. Doi, T. Yorifuji, M. Takagi, and K. Yano, J. Bacteriol. 169:5174-5179, 1987). The expected products of the cloned bph genes, except bphA3, were observed in E. coli in an in vitro transcription-translation system. Insertion mutations of bphA1 and bphC of Rhodococcus sp. strain RHA1 were constructed by gene replacement with cloned gene fragments.(ABSTRACT TRUNCATED AT 250 WORDS)
Project description:Transcription of the bphA1A2A3A4C1B genes, which are responsible for the conversion of biphenyl and polychlorinated biphenyl to the meta-cleavage products in Rhodococcus sp. strain RHA1, was examined. The bphA1 promoter (P(bphA1)) was identified and was shown to promote transcription induction by biphenyl and ethylbenzene. An 8.8-kb HindIII fragment that promotes transcription induction of P(bphA1) in Rhodococcus erythropolis IAM1399 was isolated from the region downstream of bphB by using a reporter plasmid containing P(bphA1). Analysis of the nucleotide sequence of this fragment revealed a set of putative two-component regulatory system genes, which were designated bphS and bphT. Deletion analysis of the 8.8-kb HindIII fragment indicated that bphT is responsible for the basal activation of P(bphA1) and that both bphS and bphT are required for the elevated basal activation of and transcriptional induction by biphenyl of P(bphA1). These results support the notion that bphS and bphT encode a sensor kinase and a response regulator, respectively, of a two-component regulatory system. The bphS and bphT genes promote transcriptional induction by a variety of aromatic compounds, including biphenyl, benzene, alkylbenzenes, and chlorinated benzenes. A promoter activity assay and reverse transcription (RT)-PCR analysis revealed a weak constitutive promoter in the adjacent region upstream of bphS. RT-PCR analysis indicated that there is induced transcription of bphA1 through bphT, in which P(bphA1) is thought to take part. An insertionally inactivated bphS mutant, SDR1, did not grow on biphenyl. Growth was restored by introduction of an intact bphS gene into SDR1. These results indicate that at least bphS is indispensably responsible for the growth of RHA1 on biphenyl.
Project description:Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes.