Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice
Ontology highlight
ABSTRACT: Nucleosome positioning dictates the DNA accessibility for regulatory proteins, and thus is critical for gene expression and regulation. It has been well documented that only a subset of nucleosomes are reproducibly positioned (phased) in eukaryotic genomes. The most prominent example of phased nucleosomes is the context of genes, where phased nucleosomes flank the transcriptional starts sites (TSSs). It is unclear, however, what factors influence nucleosome phasing in regions that are not close to genes. We performed a combinational mapping of nucleosome positioning and DNase I hypersensitive sites (DHSs) across the rice genome. We discovered that DHSs located in a variety of contexts, both genic and intergenic, were flanked by strongly phased nucleosome arrays. Our results support the barrier model for nucleosome organization as a general feature of eukaryote genomes, including plant genomes, and not limited to TSSs. Specifically, regions bound with regulatory proteins, including intergenic regions, can serve as barriers that organize phased nucleosome arrays on both sides. Our results also suggest that rice DHSs often span a single, phased nucleosome, similar to the H2A.Z-containing nucleosomes observed in DHSs in the human genome. We propose that genome-wide nucleosome positioning in the eukaryotic genomes is orchestrated by genomic regions associated with regulatory proteins.
ORGANISM(S): Oryza sativa
PROVIDER: GSE53027 | GEO | 2014/05/01
SECONDARY ACCESSION(S): PRJNA230696
REPOSITORIES: GEO
ACCESS DATA