Parental binge alcohol abuse alters F1 generation hypothalamic gene expression in the absence of direct fetal alcohol exposure
Ontology highlight
ABSTRACT: Adolescent binge alcohol exposure has been previously shown to have long-lasting effects on the expression of hypothalamic genes that regulate the stress response, even in the absence of subsequent adult alcohol exposure. Those data suggested that alcohol can induce permanent gene expression changes, potentially through epigenetic modifications. Importantly, epigenetic modifications can be transmitted to future generations therefore, in these studies we investigated the effects of adolescent binge alcohol exposure on hypothalamic gene expression patterns in the F1 generation offspring. It has been well documented that maternal alcohol exposure during fetal development can have devastating neurological consequences. However, less is known about the consequences of maternal and/or paternal alcohol exposure outside of the gestational time frame. Here, we exposed adolescent male and female rats to a repeated binge EtOH exposure paradigm and then mated them in adulthood. Hypothalamic samples were taken from the offspring of these animals at postnatal day (PND) 7 and subjected to a genome-wide microarray analysis followed by qRT-PCR for selected genes. Importantly, the parents were not intoxicated at the time of mating and were not exposed to EtOH at any time during gestation therefore, the offspring were never directly exposed to EtOH. Our results showed that the offspring of alcohol-exposed parents had significant differences in the expression of hypothalamic genes that mediate neurogenesis and synaptic plasticity during neurodevelopment, genes important for directing chromatin remodeling, posttranslational modifications or transcription regulation, as well as genes involved in regulation of obesity and reproductive function. These data demonstrate that repeated binge alcohol exposure during pubertal development can potentially have detrimental effects on future offspring even in the absence of direct fetal alcohol exposure.
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE53028 | GEO | 2014/03/19
SECONDARY ACCESSION(S): PRJNA230692
REPOSITORIES: GEO
ACCESS DATA