Expression data measured by Nanostring of monocyte-derived dendritic cells from healthy individuals stimulated with LPS, influenza, or IFN-beta, or left unstimulated
Ontology highlight
ABSTRACT: Variation in individuals' responses to environmental factors is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and stimulated dendritic cells (DCs) derived from the peripheral blood of healthy individuals. We stimulated the primary DCs with E. coli lipopolysaccharide (LPS), influenza virus or the cytokine IFNβ, and associated genetic variation between individuals with the observed variation in gene expression and gene induction.
Project description:Variation in individuals' responses to environmental factors is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and stimulated dendritic cells (DCs) derived from the peripheral blood of healthy individuals. We stimulated the primary DCs with E. coli lipopolysaccharide (LPS), influenza virus or the cytokine IFNβ, and associated genetic variation between individuals with the observed variation in gene expression and gene induction. We collected peripheral blood from each human donor. We isolated peripheral blood mononuclear cells by Ficoll, and magnetically sorted them for CD14+CD16- monocytes. We then differentiated the monocytes into monocyte-derived dendritic cells (MoDCs) by culturing the cells for 7 days with GM-CSF and IL-4. We stimulated the cells with E. coli lipopolysaccharide (LPS) for 2.5 hr or 5 hr, influenza (PR8 dNS1) for 10 hr, or recombinant IFN-beta for 6.5 hr. Finally, we lysed the cells and ran Nanostring on the lysates.
Project description:Variation in individuals' responses to environmental factors is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and stimulated dendritic cells (DCs) derived from the peripheral blood of healthy individuals. We stimulated the primary DCs with E. coli lipopolysaccharide (LPS) or influenza virus. Using serial replicate samples, we selected genes that showed evidence of reproducibility within the serial replicates.
Project description:Variation in individuals' responses to environmental factors is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and stimulated dendritic cells (DCs) derived from the peripheral blood of healthy individuals. We stimulated the primary DCs with E. coli lipopolysaccharide (LPS) or influenza virus. Using serial replicate samples, we selected genes that showed evidence of reproducibility within the serial replicates. We collected peripheral blood from each human donor. We isolated peripheral blood mononuclear cells by Ficoll, and magnetically sorted them for CD14+CD16- monocytes. We then differentiated the monocytes into monocyte-derived dendritic cells (MoDCs) by culturing the cells for 7 days with GM-CSF and IL-4. We stimulated the cells with E. coli lipopolysaccharide (LPS) for 5 hr or influenza (PR8 dNS1) for 10 hr. Finally, we lysed the cells and isolated total RNA for microarray.
Project description:Variation in individuals' adaptive immune response is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and activated CD4+ T cells derived from the peripheral blood of 348 healthy individuals. We activated the primary T cells with anti-CD3/CD28 beads.
Project description:Variation in individuals' adaptive immune response is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and activated CD4+ T cells derived from the peripheral blood of 348 healthy individuals. We activated the primary T cells with anti-CD3/CD28 beads. We collected peripheral blood from each human donor. We isolated peripheral blood mononuclear cells by Ficoll, and negatively selected for CD4+ T cells using RosettaSep. We isolated peripheral blood mononuclear cells by Ficoll, and negatively selected for CD4+ T cells using RosettaSep. We then either left cells unstimulated or stimulated them with beads conjugated with anti-CD3 and anti-CD28 either without additional cytokines, or with IFNb, or with Th17 cocktail. Cells were harvest at 0hr, 4hr (anti-CD3/CD28 +/- IFNb) or 48hr (anti-CD3/CD28 +/- Th17), lysed and RNA isolated to be profiled on Nanostring.
Project description:Variation in individuals' adaptive immune response is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and activated CD4+ T cells derived from the peripheral blood of healthy individuals. We activated the primary T cells with anti-CD3/CD28 beads alone or with IFNb or Th17 polarizing cytokines.
Project description:Variation in individuals' adaptive immune response is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and activated CD4+ T cells derived from the peripheral blood of healthy individuals. We activated the primary T cells with anti-CD3/CD28 beads alone or with IFNb or Th17 polarizing cytokines. We collected peripheral blood from each human donor. We isolated peripheral blood mononuclear cells by Ficoll, and negatively selected for CD4+ T cells using RosettaSep. We then either left cells unstimulated or stimulated them with beads conjugated with anti-CD3 and anti-CD28 either without additional cytokines, or with IFNb, or with Th17 cocktail. Cells were harvest at up to 8 time points (0hr, 45min, 2hr, 4hr, 10hr, 24hr, 48hr and 72hr), lysed and RNA isolated to be profiled on microarray.
Project description:This SubSeries in the ImmVar project investigates the response of selected genes in T cells from healthy human individuals to ascertain the impact of genetic or non-genetic variation on T cell activation parameters. We measured gene expression from resting and activated CD4+ T cells derived from the peripheral blood of healthy individuals. We activated the primary T cells with anti-CD3/CD28 beads alone or with IFNb or Th17 polarizing cytokines.
Project description:Variation in individuals' adaptive immune response is believed to influence susceptibility to complex diseases in humans. The genetic basis of such variation is poorly understood. We measured gene expression from resting and activated CD4+ T cells derived from the peripheral blood of healthy individuals. We activated the primary T cells with anti-CD3/CD28 beads. We collected peripheral blood from each human donor. We isolated peripheral blood mononuclear cells by Ficoll, and negatively selected for CD4+ T cells using RosettaSep. We then either left cells unstimulated or stimulated them with beads conjugated with anti-CD3 and anti-CD28. Cells from 15 individuals were harvested at up to 3 time points (0hr, 4hr or 48hr), lysed and RNA isolated to be profiled on microarray.
Project description:IFNβ, an effective therapy against relapsing-remitting (RR) multiple sclerosis (MS) is naturally secreted during the innate immune response against viral pathogens. The objective of this study was to characterize the immunomodulatory mechanisms of IFNβ targeting innate immune response and their effects on DC-mediated regulation of T-cell differentiation. We found that IFNβ−1a in-vitro treatment of human monocyte-derived dendritic cells (DCs) induced the expression of TLR7 and the members of its downstream signaling pathway, including myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase (IRAK)4, and TNF receptor-associated factor (TRAF)6, while it inhibited the expression of IL-1R. Using siRNA TLR7 gene silencing, we confirmed that IFNβ-1a-induced changes in MyD88, IRAK4 and IL-1R expression were dependent on TLR7. TLR7 expression was also necessary for the IFNβ-1a-induced inhibition of IL-1β and IL-23, and the induction of IL-27 secretion by DCs. Supernatant (SN) transfer experiments confirmed that IFNβ-1a-induced changes in DCs’ cytokine secretion inhibit Th17 cell differentiation as evidenced by the inhibition of retinoic acid-related orphan nuclear hormone receptor C (RORC) and IL-17A gene expression and IL-17A secretion. Our study has identified a novel therapeutic mechanism of IFNβ−1a, that selectively targets the autoimmune response in MS. Overall design: Gene expression changes induced by IFNβ−1a were tested using Affymetrix Human Genome U133 (HG-U133) arrays (Affymetrix) that contain 45,000 probe sets representing 39,000 transcripts derived from approximately 33,000 human genes. 107 PBMCs per condition derived from 15 CIS patients were stimulated with plate-immobilized αCD3 (1 μg/ml) and αCD28 (5 μg/ml) mAb (BD Biosciences) in the absence or presence of IFNβ-1a (1000 U/ml) (EMD Serono Inc) for 24 h in serum-free medium (Gibco). Cells were harvested and the total RNA was isolated using a Rneasy kit (Quiagen). Arrays were hybridized for 16 hours at 45oC in the GeneChip® Hybridization Oven 640 (Affymetrix). The arrays were washed and stained with R-phycoerythrin streptavidin in the GeneChip® Fluidics Station 400 (Affymetrix). The arrays were scanned with a Hewlett Packard GeneArray Scanner. Affymetrix GeneChip® Microarray Suite 5.0 software was used for washing, scanning and basic analysis.