Transcriptomics

Dataset Information

0

Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer (part 2)


ABSTRACT: Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible KrasG12D-driven mouse model of PDAC has established a critical role for sustained KrasG12D expression in tumor maintenance, providing a model to determine the potential for, and underlying mechanisms of, KrasG12D–independent PDAC recurrence. Here we show that some tumors undergo spontaneous relapse and are devoid of KrasG12D expression and downstream canonical MAPK signaling and instead acquired amplification and overexpression of the transcriptional co-activator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving KrasG12D–independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.

ORGANISM(S): Mus musculus

PROVIDER: GSE53168 | GEO | 2014/12/31

SECONDARY ACCESSION(S): PRJNA231035

REPOSITORIES: GEO

Shared Molecules

Only show the datasets with similarity scores above: 0.5
     

Similar Datasets

2014-12-31 | GSE53167 | GEO
2023-09-22 | GSE240232 | GEO
2012-04-29 | E-GEOD-32277 | biostudies-arrayexpress
2024-06-17 | GSE269313 | GEO
2024-06-17 | GSE269985 | GEO
2011-08-31 | E-GEOD-25828 | biostudies-arrayexpress
2012-01-24 | E-GEOD-27478 | biostudies-arrayexpress
2019-10-01 | GSE135754 | GEO
2012-04-30 | GSE32277 | GEO
2022-02-17 | GSE196691 | GEO