Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer (part 2)
Ontology highlight
ABSTRACT: Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible KrasG12D-driven mouse model of PDAC has established a critical role for sustained KrasG12D expression in tumor maintenance, providing a model to determine the potential for, and underlying mechanisms of, KrasG12D–independent PDAC recurrence. Here we show that some tumors undergo spontaneous relapse and are devoid of KrasG12D expression and downstream canonical MAPK signaling and instead acquired amplification and overexpression of the transcriptional co-activator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving KrasG12D–independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.
Project description:Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible KrasG12D-driven mouse model of PDAC has established a critical role for sustained KrasG12D expression in tumor maintenance, providing a model to determine the potential for, and underlying mechanisms of, KrasG12D–independent PDAC recurrence. Here we show that some tumors undergo spontaneous relapse and are devoid of KrasG12D expression and downstream canonical MAPK signaling and instead acquired amplification and overexpression of the transcriptional co-activator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving KrasG12D–independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.
Project description:Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial anti-tumor activity followed by recurrence due to cancer cell intrinsic and immune mediated paracrine mechanisms. Here, we explored the potential role of cancer associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2/ERBB3 receptor tyrosine kinases as a mechanism by which KRAS* independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in upregulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/ERBB3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitor in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.
Project description:The maintenance of advanced malignancies relies on continued activity of driver oncogenes, although their rate-limiting role is highly context-dependent with respect to tumor types and associated genetic alterations. Oncogenic Kras mutation is the signature event in human pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible KrasG12D-driven p53 mutant PDAC mouse model establishes that advanced PDAC remains strictly dependent on continued KrasG12D expression and that KrasG12D serves a vital role in the control of tumor metabolism, through stimulation of glucose uptake and channeling of glucose intermediates through the hexosamine biosynthesis pathway (HBP) and the pentose phosphate pathway (PPP). Notably, these studies reveal that oncogenic Kras regulates ribose biogenesis. Unlike canonical models of PPP-mediated ribose biogenesis, we demonstrate that oncogenic Kras drives intermediates from enhanced glycolytic flux into the non-oxidative arm of the PPP, thereby decoupling ribose biogenesis from NADPNADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in Kras-driven PDAC. Primary pancreatic tumor lines were established from p48Cre tetO_LKrasG12D ROSA_rtTAL+ p53L+ mice. Five independent tumor lines (iKras1-5) were used for pancreatic injection into nude mice to generate orthotopic tumors. The mice were kept on doxycycline for 2 weeks until obvious tumor formation. Half of the animals were pulled off doxycycline for 24 hours. Tumors with over 75% cellularity were collected for total RNA prepartion. For in vitro expression profiles, the same five tumor lines were cultured in the presence or absence of doxycycline for 24 hours and total cellular RNA was prepared. For control samples, two independent tumor lines from LSL-KrasG12D p53L+ tumors were cultured in the presence or absence of doxycycline for 24 hours and total cellular RNA was prepared.
Project description:KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.
Project description:KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.
Project description:Almost all human pancreatic ductal adenocarcinomas (PDACs) are driven by oncogenic Kras and the progression of the disease is characterized by the serial appearance of certain genetic lesions. Mouse models have convincingly shown that Kras mutation induces classical PanIN lesions that can progress to PDAC in the appropriate tumor suppressor background. However, the cooperative mechanism between mutant Kras-dependent signaling surrogates and other oncogenic pathways remains to be fully elucidated in order to devise better therapeutic strategy. Mounting evidence PTEN/PI3K perturbation on PDAC tumorigenesis, we observed frequent PTEN inactivation at both genomic and histopathological levels in primary human PDAC samples. The importance of PTEN/PI3K pathway during the development of PDAC was further supported by genetic studies demonstrating that Pten deficiency in cooperation with Kras activation accelerated the formation of invasive PDAC. Mechanistically, combined Kras mutation and Pten inactivation leads to NFkB activation and subsequent induction of cytokine pathways, accompanied with strong stromal activation and immune cell infiltration. Therefore, PTEN/PI3K pathway dictates the activity of NFkB network and serves as a major surrogate during Kras-mediated pancreatic tumorigenesis. Primary pancreatic ductal epithelial cell cultures were established from 6 week old Pdx1-Cre;LSL-KrasG12D L/+ (n=3) or Pdx1-Cre;LSL-KrasG12D L/+;Pten L/+ (n=5) mice. Total RNA was collected from early passage cells.
Project description:Constitutive Kras and NF-kappaB activation is identified as signature alterations in human pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms of constitutive NF-kappaB activation in KrasG12D-induced PDAC are not yet understood. Here, we report that pancreas-targeted IKK2/beta inactivation inhibited NF-kappaB activation and completely suppressed PDAC development in KrasG12D and KrasG12D;Ink4a/Arf mutant mice, demonstrating a genetic link between IKK2/beta and KrasG12D in PDAC inception. Our findings reveal that KrasG12D-activated AP-1 induces IL-1alpha, which in turn activates NF-kappaB and its target genes IL-1alpha and p62, to initiate IL-1alpha/p62 feedforward loops for inducing and sustaining NF-kappaB activity. Furthermore, IL-1alpha overexpression correlates with Kras mutation, constitutive NF-kappaB activity, and poor survival in PDAC patients. Therefore, our findings establish a pathway linking duel feedforward loops of IL-1alpha/p62 through which IKK2/beta/NF-kappaB is activated by KrasG12D. To study Kras-induced inflammatory responses and to identify differentially expressed genes between the pancreatic tissues of Pdx1-Cre;KrasLSL-G12D and Pdx1-Cre;KrasLSL-G12D;IKK2/betaF/F mice, cDNA microarray analysis was performed.
Project description:Transcriptomic profiling classifies pancreatic ductal adenocarcinoma (PDAC) into several molecular subtypes with distinctive histological and clinical characteristics. However, little is known about the molecular mechanisms that define each subtype and how this correlates with clinical outcome. Mutant KRAS is the most prominent driver in PDAC, present in over 90% of tumors, but the dependence of tumors on oncogenic KRAS signaling varies between subtypes. In particular, squamous subtype PDACs are relatively independent of oncogenic KRAS signaling and typically display much more aggressive clinical behavior versus progenitor subtype PDACs. Here, we identified that YAP1 activation is enriched in the squamous subtype and associated with poor prognosis. Activation of YAP1 in progenitor subtype cancer cells profoundly enhanced malignant phenotypes and transformed progenitor subtype cells into squamous subtype. Conversely, depletion of YAP1 specifically suppressed tumorigenicity of squamous subtype PDAC tumors. Mechanistically, we uncovered a significant positive correlation between WNT5A expression and the YAP activation signature, and we demonstrated that WNT5A overexpression led to YAP activation and recapitulated YAP1-dependent but but Kras-independent phenotype of tumor progression and maintenance. Thus, our study identifies YAP1 oncogene as a major driver of squamous subtype PDAC and uncovers the role of WNT5A to drive PDAC malignancy via activation of the YAP pathway.
Project description:The maintenance of advanced malignancies relies on continued activity of driver oncogenes, although their rate-limiting role is highly context-dependent with respect to tumor types and associated genetic alterations. Oncogenic Kras mutation is the signature event in human pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible KrasG12D-driven p53 mutant PDAC mouse model establishes that advanced PDAC remains strictly dependent on continued KrasG12D expression and that KrasG12D serves a vital role in the control of tumor metabolism, through stimulation of glucose uptake and channeling of glucose intermediates through the hexosamine biosynthesis pathway (HBP) and the pentose phosphate pathway (PPP). Notably, these studies reveal that oncogenic Kras regulates ribose biogenesis. Unlike canonical models of PPP-mediated ribose biogenesis, we demonstrate that oncogenic Kras drives intermediates from enhanced glycolytic flux into the non-oxidative arm of the PPP, thereby decoupling ribose biogenesis from NADPNADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in Kras-driven PDAC.
Project description:We investigate the dependence of human malignant pleural mesothelioma on a functional YAP1-TEAD transcription factor complex to maintain fully established tumors in vivo. We show that, in a dysfunctional Hippo genetic background, expression of a dominant negative TEAD2 modulates YAP1/TEAD-dependent gene expression and inhibits growth of established tumor xenografts. Our data demonstrate that, in the context of a mutated Hippo pathway, TEAD2 activity is essential to maintain the growth of mesothelioma tumors in vivo, thus validating the concept of inhibiting the activated YAP1/TEAD complex for the treatment of malignant pleural mesothelioma patients.