Electroacupuncture mobilized cells demonstrate mesenchymal properties and potency in an equine model
Ontology highlight
ABSTRACT: Electroacupuncture is the combination of traditional acupuncture and modern electrotherapy. Here we provide a mechanism for the beneficial effects of electroacupuncture and show that stimulation of the equine acupoints LI-4, LI-11 and GV-14 and Bai-hui results in mobilization of mesenchymal stem cells (MSCs) into the systemic circulation, which was accompanied by a time-dependent increase in plasma levels of norepinephrine (p=0.02). MSC differentiation was preferentially directed towards osteogenic rather than adipogenic lineages. Additionally, MSCs enhanced arterialization of blood vessels in vivo when implanted with human endothelial colony forming cells in oligomeric collagen matrices in NOD/SCID mice. When compared to equine bone marrow-derived MSCs or to equine adipose-tissue-derived MSCs, through the use of a microarray, these cells clustered separately. The electroacupuncture -mobilized cells showed increased expression of genes involved in cell growth and proliferation, compared to the bone marrow cells. These findings provide a new insight into the mechanism of the beneficial effects of acupuncture. Our findings suggest the involvement of neuronal regulation in the mobilization of reparative MSCs, and use of electroacupuncture at these designated points may be considered to treat acute and chronic inflammation following injury for which MSCs have been deemed beneficial.
ORGANISM(S): Equus caballus
PROVIDER: GSE53723 | GEO | 2017/05/26
SECONDARY ACCESSION(S): PRJNA232721
REPOSITORIES: GEO
ACCESS DATA