Serious leaf damage caused by Osslac7 mutation arouses self-protection mechanism in rice
Ontology highlight
ABSTRACT: OsSLAC7 in Oryza sativa L. is a homolog of Arabidopsis thaliana AtSLAC1, which contains conserved C4-Dicarboxylate transporter domain. Loss of its function caused cell membrane instability and serious leaf damage. We used Affymetrix Rice Genome Array to detail the differences in global gene expression between widetype and the OsSLAC7 T-DNA insertion mutants, and to make clear the bioprocesses affected by the mutation.
Project description:OsSLAC7 in Oryza sativa L. is a homolog of Arabidopsis thaliana AtSLAC1, which contains conserved C4-Dicarboxylate transporter domain. Loss of its function caused cell membrane instability and serious leaf damage. We used Affymetrix Rice Genome Array to detail the differences in global gene expression between wildtype and the OsSLAC7 T-DNA insertion mutants, and to make clear the bioprocesses affected by the mutation. OsSLAC7(Os01g0385400) T-DNA insertion mutant and wildtype japonica rice cultivar Zhonghua11 were used for RNA extraction and hybridization on Affymetrix Rice Genome Array.
Project description:To evaluate the roles of gene regulation in Oryza sativa leaf, dynamic profiles of transcriptome were investigated in Oryza sativa L. spp. indica with different treatments, the aerial tissues of one-month-old plants from four different areas (groups 1–4) were treated with 0, 40 mL of 25% azoxystrobin, 0.01 g of VdAL, or 40 mL of 25% azoxystrobin plus 0.01 g VdAL, respectively.
Project description:Plasmodesmata (PD) are nanochannels that facilitate cell-to-cell transport in plants. More productive and photosynthetically efficient C4 plants form more PD at the mesophyll (M)-bundle sheath (BS) interface in their leaves than their less efficient C3 relatives. In C4 leaves, PD play an essential role in facilitating the rapid metabolite exchange between the M and BS cells to operate a biochemical CO2 concentrating mechanism, which increases the CO2 partial pressure at the site of Rubisco in the BS cells and hence photosynthetic efficiency. The genetic mechanism controlling PD formation in C3 and C4 leaves is largely unknown, especially in monocot crops, due to the technical challenge of quantifying these nanostructures with electron microscopy. To address this issue, we have generated stably transformed lines of Oryza sativa (rice, C3) and Setaria viridis (setaria, C4) with fluorescent protein-tagged PD to build the first spatiotemporal atlas of leaf pit field (cluster of PD) density in monocots without the need for electron microscopy. Across leaf development, setaria had consistently more PD connections at the M-BS wall interface than rice while the difference in M-M pit field density varied. While light was a critical trigger of PD formation, cell type and function determined leaf pit field density. Complementary temporal mRNA sequencing and gene co-expression network analysis revealed that the pattern of pit field density correlated with differentially expressed PD-associated genes and photosynthesis-related genes. PD-associated genes identified from our co-expression network analysis are related to cell wall expansion, translation and chloroplast signalling.
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with 10 geographically diverse strains of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease. Examination of mRNA levels in Oryza sativa L. ssp. japonica cv. Nipponbare leaves at 48 hours after inoculation with 10 strains of Xanthomonas oryzae pv.oryzicola with three biological replicates for each compared to three replicates of mock inoculated O sativa as the control
Project description:Symbiotic nitrogen fixation (SNF) is an energetically expensive process performed by bacteria known as rhizobia during endosymbiotic relationships with leguminous plants. The bacteria require the plant to provide a carbon source for generation of the reductant to power SNF. Although it is well known that C4-dicarboxylates (succinate, fumarate, malate) function as the primary, if not sole, carbon source provided to the rhizobia, the relative contribution of each C4-dicarboxylate is not known. Here, we employ genetic and systems-level analyses to address this issue. Expression of a malate specific transporter (MaeP) in Sinorhizobium meliloti Rm1021 dct mutants unable to transport C4-dicarboxylates resulted in malate import rates up to ~ 30% that of wild type S. meliloti. This was sufficient to support SNF with Medicago sativa, with acetylene reduction rates up to ~ 50% those of plants inoculated with wild type S. meliloti. Rhizobium leguminosarum bv. viciae 3841 dct mutants unable to transport C4-dicarboxylates but expressing the maeP transporter had strong symbiotic properties, with Pisum sativum plants inoculated with these strains appearing similar to plants inoculated with wild type R. leguminosarum. This was despite malate transport rates by the mutant bacteroids being < 10% those of the wild type. A transcriptomics analysis of the combined plant/bacterium nodule transcriptome was performed using RNA-sequencing to identify any systems-level adaptations in response to the inability of the bacteria to import succinate or fumarate. Few transcriptional changes, with no obvious pattern, were revealed by this analysis. Overall, these data illustrated that succinate and fumarate are not essential for SNF, and that at least in specific symbioses, L-malate is likely to naturally serve as the primary C4-dicarboxylate provided to the bacterium.
Project description:Investigation of whole genome gene expression level changes in a Azospirillum lipoferum 4B associated to artificial roots, Oryza sativa japonica cv. Cigalon roots and Oryza sativa japonica cv. Nipponbare roots, compared to the strain grown in liquid culture.
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with 10 geographically diverse strains of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease.
Project description:Os02g31890 encodes a dehydration-responsive transcription factor (named ´ARID´) from rice (Oryza sativa, cv. Dongjin). Expression profiling was performed 90 min after the start of dehydration stress in roots of Oryza sativa wild-type plants (cv. Dongjin) and a knock-out (i.e. arid) mutant.