Pre-BCR Signaling induce IgK Locus Accessibility by functional redistribution of Enhancer-mediated chromatin Interactions
Ontology highlight
ABSTRACT: During B cell development the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin k light chain (Igk) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline Vk transcription. To investigate whether pre-BCR signaling modulates Vk accessibility through enhancer-mediated Igk locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the k enhancers robustly interact with the ~3.2 Mb Vk region and its flanking sequences. Analyses in wild-type, Btk and Slp65 single and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igk locus flanking sequences and increases interactions of the 3’k enhancer with Vk genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and Vk genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used Vk genes, which are often marked by transcription factor E2a. We conclude that the k enhancers interact with the Vk region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the Vk region, whereby the two enhancers play distinct roles.
Project description:During B cell development the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin k light chain (Igk) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline Vk transcription. To investigate whether pre-BCR signaling modulates Vk accessibility through enhancer-mediated Igk locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the k enhancers robustly interact with the ~3.2 Mb Vk region and its flanking sequences. Analyses in wild-type, Btk and Slp65 single and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igk locus flanking sequences and increases interactions of the 3â??k enhancer with Vk genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and Vk genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used Vk genes, which are often marked by transcription factor E2a. We conclude that the k enhancers interact with the Vk region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the Vk region, whereby the two enhancers play distinct roles. We performed genome-wide expression profiling of FACS-purified B220+CD19+ pre-B cell fractions from wild-type (WT), Btk and Slp65 single and double deficient VH81x transgenic Rag1-/- mice (n=4 of each genotype). In these experiments non-VH81x transgenic Rag1-/- pro-B cells served as controls (n=3).
Project description:Deep sequencing has the potential to provide great insight into the composition of the antibody repertoire and is now widely used. To date there has not been a study directly comparing relative rearrangement frequencies obtained with unbiased amplification from genomic DNA (gDNA) and cDNA from the same set of cells to elucidate any differences. Here we use a recently developed method for unbiased amplification of gDNA and directly compare the data to the unbiased RNA IgK repertoire from the same pre-B cell pool. We find that ~20% of Vk genes have relative rearrangement frequencies > 2-fold up or down in the RNA vs DNA libraries, including many members of the Vk4, Vk3 and Vk6 families. Regression analysis indicates that Ikaros and E2A binding are associated with strong promoters. Within the pre-B repertoire, we found that the vastly unequal Vk gene rearrangement frequencies are best predicted by epigenetic marks of enhancers. In particular, the levels of newly arising H3K4me1 peaks associated with many Vk genes in pre-B cells are most predictive of rearrangement levels. Comparison of IgK rearrangements that occur in pro-B cells and pre-B cells from the same mice reveal a pro-B cell bias towards usage of Jk-distal Vk genes, particularly Vk 10-96 and surrounding genes. Regression analysis indicates that PU.1 binding is the highest predictor of high Vk gene rearrangement frequency in pro-B cells. Lastly, repertoires of iEk -/- pre-B cells reveal that the intronic enhancer actively influences Vk gene usage and displays a germline transcriptional sphere of influence extending to Vk 6-15, overlapping with the deficit in Jk proximal Vk gene usage. These represent previously unknown roles for iEk in addition to its major function in stimulating overall IgK rearrangement.
Project description:In developing B lymphocytes, V(D)J recombination assembles IgH and Igk variable region exons from hundreds of gene segments clustered across mega-base Igh and Igk loci. V, D, and J segments are flanked by conserved recombination signal sequences (RSSs) that target RAG endonuclease. RAG orchestrates Igh V(D)J recombination upon capturing a JH-RSS within the JH-RSS-based recombination center (RC). JH-RSS orientation programs RAG to scan upstream D- and VH-containing chromatin linearly presented by cohesin-mediated loop extrusion. During Igh scanning, RAG robustly utilizes only D- or VH-RSSs in convergent ("deletional") orientation with JH-RSSs. However, for Vk-to-Jk joining, RAG utilizes Vk-RSSs from deletional- and inversional-oriented clusters, inconsistent with linear scanning. Here, we elucidate the Vk-to-Jk joining mechanism. Igk undergoes robust primary and secondary rearrangements, which confounds scanning assays. Thus, we engineered cells to undergo only primary Vk-to-Jk rearrangements and found that RAG-scanning from the primary Jk-RC terminates just 8kb upstream within the CTCF-Site-based Sis element. While Sis and the Jk-RC barely interacted with the Vk locus, the CTCF-site-based Cer element, 4kb upstream of Sis, interacted with various loop-extrusion impediments across the locus. Like VH-locus inversion, DJH inversion abrogated VH-to-DJH joining; yet Vk-locus or Jk inversion allowed robust Vk-to-Jk joining. Together, these experiments implicated loop extrusion in bringing Vks near Cer for short-range diffusion-mediated capture by RC-based RAG. To elucidate key mechanistic elements for diffusional V(D)J recombination in Igk versus Igh, we assayed Vk-to-JH and D-to-Jk rearrangements in hybrid Igh-Igk loci generated by targeted chromosomal translocations, and pinpointed remarkably strong Vk and Jk RSSs. Indeed, RSS replacements in hybrid or normal Igk and Igh loci confirmed ability of Igk versus Igh RSSs to promote robust diffusional joining. We propose that Igk evolved strong RSSs to mediate diffusional Vk-to-Jk joining; while Igh evolved weaker RSSs requisite for modulating VH joining by RAG scanning impediments.
Project description:In developing B lymphocytes, V(D)J recombination assembles IgH and Igk variable region exons from hundreds of gene segments clustered across mega-base Igh and Igk loci. V, D, and J segments are flanked by conserved recombination signal sequences (RSSs) that target RAG endonuclease. RAG orchestrates Igh V(D)J recombination upon capturing a JH-RSS within the JH-RSS-based recombination center (RC). JH-RSS orientation programs RAG to scan upstream D- and VH-containing chromatin linearly presented by cohesin-mediated loop extrusion. During Igh scanning, RAG robustly utilizes only D- or VH-RSSs in convergent ("deletional") orientation with JH-RSSs. However, for Vk-to-Jk joining, RAG utilizes Vk-RSSs from deletional- and inversional-oriented clusters, inconsistent with linear scanning. Here, we elucidate the Vk-to-Jk joining mechanism. Igk undergoes robust primary and secondary rearrangements, which confounds scanning assays. Thus, we engineered cells to undergo only primary Vk-to-Jk rearrangements and found that RAG-scanning from the primary Jk-RC terminates just 8kb upstream within the CTCF-Site-based Sis element. While Sis and the Jk-RC barely interacted with the Vk locus, the CTCF-site-based Cer element, 4kb upstream of Sis, interacted with various loop-extrusion impediments across the locus. Like VH-locus inversion, DJH inversion abrogated VH-to-DJH joining; yet Vk-locus or Jk inversion allowed robust Vk-to-Jk joining. Together, these experiments implicated loop extrusion in bringing Vks near Cer for short-range diffusion-mediated capture by RC-based RAG. To elucidate key mechanistic elements for diffusional V(D)J recombination in Igk versus Igh, we assayed Vk-to-JH and D-to-Jk rearrangements in hybrid Igh-Igk loci generated by targeted chromosomal translocations, and pinpointed remarkably strong Vk and Jk RSSs. Indeed, RSS replacements in hybrid or normal Igk and Igh loci confirmed ability of Igk versus Igh RSSs to promote robust diffusional joining. We propose that Igk evolved strong RSSs to mediate diffusional Vk-to-Jk joining; while Igh evolved weaker RSSs requisite for modulating VH joining by RAG scanning impediments.
Project description:Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates VH-DJH recombination in pro-B cells by aligning the VH and DJH segments for RAG-mediated cleavage. This cohesin-mediated process, resulting in global changes of the chromosome architecture in pro-B cells, depends on a 3-fold downregulation of the cohesin-release factor Wapl by Pax5-induced repression of the Wapl promoter. Here, we demonstrate that chromatin looping and VK-JK recombination at the Igk locus was insensitive to a 3-fold Wapl increase in pre-B cells. Given the equally low Wapl mRNA levels in pro-B and pre-B cells, the Wapl protein was unexpectedly expressed at a 2.2-fold higher level in pre-B cells compared to pro-B cells, which resulted in a distinct chromosomal architecture with normalized loop sizes in pre-B cells. High-resolution analysis of the Igk locus identified multiple internal loops, which likely juxtapose VK and JK elements to facilitate VK-JK recombination. The higher Wapl expression in Igm-transgenic pre-B cells prevented extended loop extrusion at the Igh locus, leading to recombination of only the 6 most 3’ proximal VH genes and to allelic exclusion of all other VH genes in pre-B cells. Hence, the different chromosomal architectures in pro-B and pre-B cells forced the Igh and Igk loci to assume distinct folding principles to undergo V gene recombination.
Project description:In B lymphopoiesis, activation of the pre-B cell antigen receptor (pre-BCR) is associated with both cell cycle exit and Igk recombination. Yet, how the pre-BCR mediates these functions remains unclear. Herein, we demonstrate that the pre-BCR initiates a feed-forward IRF4-CXC Receptor 4 (CXCR4) amplification loop. ERK activation by CXCR4 then directs the development of small and immature B cells including orchestrating cell cycle exit, pre-BCR repression, Igk recombination and BCR expression. In contrast, escape from IL-7 and pre-BCR expression have only modest effects on B cell developmental transcriptional and epigenetic programs. These data demonstrate a direct and central role for CXCR4 in orchestrating late B cell lymphopoiesis. Furthermore, in the context of previous findings, our data provide a three-receptor system sufficient to recapitulate the essential features of B lymphopoiesis in vitro.
Project description:Here we identify that drug-resistant BTK mutations occur in distinct enzymatic classes, some of which render BTK enzymatically impaired while conferring novel protein-protein interactions to sustain B-cell receptor (BCR) signaling.
Project description:B lymphopoiesis requires that immunoglobulin genes be accessible to RAG1-RAG2 recombinase. However, the RAG proteins bind widely to open chromatin, which suggests that additional mechanisms must restrict RAG-mediated DNA cleavage. Here we show that developmental downregulation of interleukin 7 (IL-7)-receptor signaling in small pre-B cells induced expression of the bromodomain-family member BRWD1, which was recruited to a specific epigenetic landscape at Igk dictated by pre–BCR-dependent Erk activation. BRWD1 enhanced RAG recruitment, increased gene accessibility and positioned nucleosomes 5? to each J? recombination signal sequence. BRWD1 thus targets recombination to Igk and places recombination within the context of signaling cascades that control B cell development. Our findings represent a paradigm in which,at any particular antigen-receptor locus, specialized mechanisms enforce lineage- and stage-specific recombination. ChIP-seq for 1 transcription factor and 2 histone modifications in flow purified mouse small pre-B cells. ATAC-seq and RNA-seq in WT and Brwd-Mut mouse flow purified small pre-B cells.