Gene expression in near isogenic spring wheat lines carrying different combinaison of the FHB resistance QTLs 2DL, 3BS and 5A during early infection with Fusarium graminearum, the major causal agent of fusarium head blight in wheat
Ontology highlight
ABSTRACT: Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from near isogenic spring wheat lines carrying different combinaison of the FHB resistance QTLs 2DL, 3BS and 5A, after inoculation with water (H2O) or Fg; the point inoculation method was used.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from near isogenic spring wheat lines carrying or not the FHB resistance QTL 2DL, after inoculation with water (H2O) or Fg; two inoculation methods were also compared, point and spray inoculation.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant spring wheat cultivar Wuhan1 inoculated with water (H2O) or Fg.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant spring wheat cultivar NuyBay inoculated with water (H2O) or Fg.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant winter wheat cultivar Dream inoculated with water (H2O) or Fg.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with water (H2O) or Fg.
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affecting the flowering heads (or spikes). A FHB resistance locus has been identified on the chromosome 7E of the wild wheat relative Thinopyrum elongatum (Th.e.). That chromosome (7E) or a long arm fragment of it (7EL) have been transferred as additions in the wheat background 'Chinese Spring' (CS). The two addition lines are resistant to FHB while 'Chinese Spring' is moderately susceptible to it. The mechanism of resistance is not known. The analysis of this work is published in the Canadian Journal of Plant Pathology (Wang et al, 2010). We used the wheat microarray to determine the global expression profil in inoculated spikelets of the addition and parental lines, after water or Fg treatment, with samplings at 2 and 4 days after inoculation (DAI).
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with either water (H2O), a Fg strain (GZ3639) producing the mycotoxin deoxynivalenol (+DON), or a GZ3639-derived Fg strain which has been inactivated at the Tri5 locus (-DON).
Project description:Fusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes) and developing seeds. This study compare the gene expression profile in wheat spikelets (spk 2) inoculated with either water (mock treatment) or a pathogenic strain of Fusarium graminearum (WT); spikelets 2 were inoculated 24 hrs after a neighbour spikelet (spk 0) was treated with either water or F. graminerum mutant strain Tri6Δ or NoxABΔ. Spikelets 2 were sampled 8 and 24 hrs after the second treatment.
Project description:Fusarium Head Blight (FHB) is a disease of wheat and other cereal crops, where, among other species, Fusarium graminearum infects the wheat inflorescence. Microarrays were used to observe differential gene expression in FHB-challenged spikes of the two European winter wheat genotypes Dream (moderately resistant) and Lynx (susceptible). Plants were either inoculated with the Fusarium graminearum strain IFA 65 (IFA Tulln) (500 macroconidia/floret) or were as control plants mock treated with desalted water. The inocula were injected into four spikelets at early anthesis and spikelets were later on collected at 32 and 72 h after inoculation. Four plants were sampled per genotype/treatment/sampling date. Total RNA was extracted from collected spikelets, and microarray analysis was performed using the Affymetrix Wheat GeneChip.
Project description:Fusarium Head Blight (FHB) is a disease of wheat and other cereal crops, where Fusarium graminearum and related species infects the wheat inflorescence during and post-anthesis. The fungus produces trichothecene toxins that accumulate in the grain of infected head, and are required for disease spread. Microarrays were used to observe differential gene expression in the uninoculated spikelets of FHB-challenged wheat spikes in three wheat genotypes. A summary of our findings will be published in Plant Pathology. Three wheat genotypes were used: (1) 'Superb', an FHB-susceptible Canadian wheat cultivar; (2) GS-1-EM0040 (CIMMYT11x'Superb'*2), a double haploid line with good resistance to initial infection (Type 1 resistance), and moderate resistance to disease spread (Type 2 resistance); and (3) GS-1-EM0168 (CM82036x'Superb'*2), a double haploid line with moderate Type 1 resistance, and good Type 2 resistance. Five inocula were used: (A) water, (B) FgTri5+ (GZ3639, a trichothecene-producing F. graminearum strain); (C) FgTri5- (GZT40, a trichothecene-non-producing mutant of the F. graminearum strain GZ3639); (D) FgTri5 supplemented with deoxynivalenol (DON), which is the main trichothecene produced by FgTri5+; and (E) DON. The inocula were injected into two spikelets near the center of the spike during early stages of anthesis, and spikelets above and below the inoculation point were collected at 3, 8, and 24 h after inoculation. A zero-hour un-inoculated control was also collected from each line. Total RNA was extracted from collected spikelets, and microarray analysis was perfomed using the Affymetrix Wheat GeneChip.