Collier/OLF/EBF-dependent transcriptional dynamics control muscle specification from cardiopharyngeal progenitors
Ontology highlight
ABSTRACT: In vertebrates, pluripotent pharyngeal mesoderm progenitors produce the cardiac precursors of the second heart field as well as the branchiomeric head muscles and associated stem cells. However, the cellular and molecular mechanisms underlying the transition from multipotent progenitors to distinct heart and muscle precursors remain obscured by the complexity of vertebrate embryos. Here, using the ascidian Ciona intestinalis as a simple chordate model for cardiopharyngeal development, we show that bipotent progenitors are transcriptionally primed to activate both heart and pharyngeal muscle regulatory programs, which become restricted to the corresponding precursors following a conserved pattern of asymmetric divisions. Localized expression of COE (Collier/OLF1/EBF) then orchestrates the transition to a pharyngeal muscle fate both by promoting an MRF (Myogenic Regulatory Factor)-associated core myogenic program in myoblasts and by maintaining an undifferentiated state in their sister precursors through Notch-mediated lateral inhibition. Using single cell lineage tracing, we show that the latter are stem-like muscle precursors, which form most of the juvenile body wall muscles following proliferation, self-renewal, re-activation of MRF, and migration. We discuss the implications of our findings for the development and evolution of the cardiopharyngeal mesoderm in chordates. We combined fluorescence-activated cell sorting (FACS) and whole genome transcription profiling following perturbations of COE function to characterize the transcriptional dynamics underlying the specification of heart and ASM precursors in the ascidian cardiopharyngeal lineage.
ORGANISM(S): Ciona intestinalis
PROVIDER: GSE54746 | GEO | 2014/07/17
SECONDARY ACCESSION(S): PRJNA237534
REPOSITORIES: GEO
ACCESS DATA