Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression.
Ontology highlight
ABSTRACT: Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor β (TGF-β) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-β/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-β/Activin signaling in sugar metabolism.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE54755 | GEO | 2014/09/10
SECONDARY ACCESSION(S): PRJNA237553
REPOSITORIES: GEO
ACCESS DATA