Project description:ChIP-chip experiments were done to analyze the global distribution of H3K36Ac or H3K9K14Ac in yeast compared to H3 distribution Keywords: ChIP-chip
Project description:Set2p, which mediates histone H3 Lysine 36 dimethylation (H3K36me2) in Saccharomyces cerevisiae, has been shown to associate with RNA polymerase II (RNAP II) at individual loci. Here, ChIP-chip experiments normalized to general nucleosome occupancy reveal that nucleosomes within open reading frames (ORFs) and downstream non-coding chromatin were highly dimethylated at H3K36, and that Set2p activity begins at a stereotypic distance from the initiation of transcription genome-wide. H3K36me2 is scarce in regions upstream of divergently transcribed genes, telomeres, silenced mating loci, and regions transcribed by RNA polymerase III, providing evidence that the enzymatic activity of Set2p is restricted to its association with RNAP II. The presence of H3K36me2 within ORFs correlated with the "on" or "off" state of transcription, but the degree of H3K36 dimethylation within ORFs did not correlate with transcription frequency. This provides evidence that H3K36me2 is established during the initial instances of gene transcription, with subsequent transcription having at most a maintenance role. Accordingly, newly activated genes acquire H3K36me2 in a manner that does not correlate with gene transcript levels. Finally, nucleosomes dimethylated at H3K36 appear to be refractory to loss from highly transcribed chromatin. Thus H3K36me2, which is highly conserved throughout eukaryotic evolution, provides a stable molecular mechanism for establishing chromatin context throughout the genome by distinguishing potential regulatory regions from transcribed chromatin. Keywords: ChIP-chip
Project description:Histone methylation plays important roles in the regulation of chromatin dynamics and transcription. Steady state levels of histone lysine methylation are regulated by a balance between enzymes that catalyze either the addition or removal of methyl groups. Using an activity-based biochemical approach, we recently uncovered the JmjC domain as an evolutionarily conserved signature motif for histone demethylases. Furthermore, we demonstrated that Jhd1, a JmjC domain-containing protein in S. cerevisiae, is an H3K36-specific demethylase. Here we report further characterization of Jhd1. Similar to its mammalian homolog, Jhd1-catalyzed histone demethylation requires iron and alpha-ketoglutarate as cofactors. Mutation and deletion studies indicate that the JmjC domain and adjacent sequences are critical for Jhd1 enzymatic activity, while the N-terminal PHD domain is dispensable. Overexpression of JHD1 results in a global reduction of H3K36 methylation in vivo. Finally, chromatin immunoprecipitation coupled microarray (ChIP-chip) studies reveal subtle changes in the distribution of H3K36me2 upon overexpression or deletion of JHD1. Our studies establish Jhd1 as a histone demethylase in budding yeast and suggest that Jhd1 functions to maintain the fidelity of histone methylation patterns along transcription units. Keywords: ChIP-chip H3K36me2 ChIPs were performed on wild type, jhd1 knockout, and JHD1 overexpression yeast strains.