Salt Induced Hypertensive Disease Results in Over Expression of Matricellular Genes in Cerebral Arteries
Ontology highlight
ABSTRACT: The Dahl salt-sensitive (S) rat model develops chronic hypertensive disease when fed a high salt diet that ultimately results in renal and heart failure, as well as prevalent cerebrovascular pathologies. Phenotypic changes in the cerebral vasculature are preceded by changes in gene expression, and evidence supports a role for extracellular signal-regulated kinase 1/2 (ERK1/2) in vascular cell proliferation, yet little is known regarding ERK1/2 –regulated gene transcription in cerebrovascular smooth muscle during hypertension. Findings presented here support the hypothesis that salt-induced hypertensive disease results in upregulation of ERK1/2 activity and ERK1/2-regulated genes that promote remodeling in cerebral resistance arteries. Dahl S rats were fed either a 0.4% NaCl (low salt, LS) or 8% NaCl (high salt, HS) diet until evidence of left ventricular dysfunction. Gene expression profiling using oligonucleotide array analysis detected a significant fold-change of 1.5 or greater in 133 out of 15,923 genes examined. Mitogen-activated protein kinase (MAPK)-regulated genes were overrepresented and provided a link to genes involved in proliferation and extracellular matrix signaling including plasminogen activator inhibitor I (PAI-1), osteopontin (OPN) and junB. These data suggests that salt induced hypertensive disease promotes hyperplasia and changes in matricellular genes that are likely important in vascular remodeling. Keywords: Normotensive vs. Hypertensive Disease
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE5488 | GEO | 2007/08/09
SECONDARY ACCESSION(S): PRJNA96125
REPOSITORIES: GEO
ACCESS DATA