Platelet Activating Factor Receptor and Innate Immunity
Ontology highlight
ABSTRACT: This data series contains spotted oligo microarray data from 10 different experiments using Agilent Rat v2 microarrays. This data is being made public in support of Fillon S et al. Journal of Immunology, (2006). Proinflammatory bacterial components are at least partially responsible for causing the clinical features of sepsis, a syndrome that causes >100,000 deaths each year in the US (1). In the case of Gram positive infection, a key bacterial element recognized by the innate immune system is the cell wall, a complex network of peptidoglycan covalently linked to teichoic acids, proteins and lipoproteins. The current model of innate immune recognition of Gram positive bacteria suggests bacterial cell wall interacts with host recognition proteins, such as toll-like receptors (TLR) and Nod proteins. We describe an additional recognition system mediated by the platelet activating factor receptor (PAFr) and directed to the pathogen associated molecular pattern (PAMP) phosphorylcholine that results in uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild type, Tlr2-/- and Nod2-/- mice, but not in Pafr-/- mice. Cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons, but causing rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as cell wall into host cells from where the response ranges from quiescence to severe pathophysiology. Keywords: Competitive hybridizations
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE5545 | GEO | 2006/08/17
SECONDARY ACCESSION(S): PRJNA96035
REPOSITORIES: GEO
ACCESS DATA