Project description:Follicular dendritic cells (FDC) are important stromal cells within the B cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes which they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs of approximately 18-25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the translation of target genes. In the current study in vivo and in vitro systems were used to identify microRNAs that are differentially expressed as a result of FDC depletion. Constitutive lymphotoxin-M-NM-2 receptor (LTM-NM-2R) stimulation is required to maintain FDC in their differentiated state. We show that the rapid de-differentiation of spleen FDC that followed LTM-NM-2R-blockade, coincided with a significant decrease in the expression of mmu-miR-100-5p, mmu-miR-138-5p and mmu-miR-2137. These microRNAs were shown to be expressed in the FDC-like cell line, FL-YB, and specific inhibition of mmu-miR-100-5p significantly enhanced expression of Il6, Ptgs1/2 and Tlr4 in this cell line. The expression of each of these genes by FDC plays an important role in regulating GC size and promoting high-affinity antibody responses, suggesting that mmu-miR-100-5p may help regulate their expression during GC reactions. C57BL/6 mice were given a single intravenous injection of 100 M-BM-5g of LTM-NM-2R to temporarily deplete their FDC. At intervals after treatment 4 spleens from each group were harvested and RNA prepared. For each group samples were pooled into 2 groups of 2 and microRNA expression levels compared. Spleens from LTb-/- mice were also analysed. One channel was used for the actual sample, the second channel was used for internal QC reference.
Project description:Follicular dendritic cells (FDC) are important stromal cells within the B cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes which they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs of approximately 18-25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the translation of target genes. In the current study in vivo and in vitro systems were used to identify microRNAs that are differentially expressed as a result of FDC depletion. Constitutive lymphotoxin-β receptor (LTβR) stimulation is required to maintain FDC in their differentiated state. We show that the rapid de-differentiation of spleen FDC that followed LTβR-blockade, coincided with a significant decrease in the expression of mmu-miR-100-5p, mmu-miR-138-5p and mmu-miR-2137. These microRNAs were shown to be expressed in the FDC-like cell line, FL-YB, and specific inhibition of mmu-miR-100-5p significantly enhanced expression of Il6, Ptgs1/2 and Tlr4 in this cell line. The expression of each of these genes by FDC plays an important role in regulating GC size and promoting high-affinity antibody responses, suggesting that mmu-miR-100-5p may help regulate their expression during GC reactions. C57BL/6 mice were given a single intravenous injection of 100 µg of LTβR to temporarily deplete their FDC. At intervals after treatment 4 spleens from each group were harvested and RNA prepared. For each group samples were pooled into 2 groups of 2 and microRNA expression levels compared. Spleens from LTb-/- mice were also analysed.
Project description:Follicular dendritic cells (FDC) are important stromal cells within the B cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes which they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs of approximately 18-25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the translation of target genes. In the current study in vivo and in vitro systems were used to identify microRNAs that are differentially expressed as a result of FDC depletion. Constitutive lymphotoxin-β receptor (LTβR) stimulation is required to maintain FDC in their differentiated state. We show that the rapid de-differentiation of spleen FDC that followed LTβR-blockade, coincided with a significant decrease in the expression of mmu-miR-100-5p, mmu-miR-138-5p and mmu-miR-2137. These microRNAs were shown to be expressed in the FDC-like cell line, FL-YB, and specific inhibition of mmu-miR-100-5p significantly enhanced expression of Il6, Ptgs1/2 and Tlr4 in this cell line. The expression of each of these genes by FDC plays an important role in regulating GC size and promoting high-affinity antibody responses, suggesting that mmu-miR-100-5p may help regulate their expression during GC reactions.
Project description:Follicular dendritic cells (FDC) are important stromal cells within the B cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes which they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs of approximately 18-25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the translation of target genes. In the current study in vivo and in vitro systems were used to identify microRNAs that are differentially expressed as a result of FDC depletion. Constitutive lymphotoxin-β receptor (LTβR) stimulation is required to maintain FDC in their differentiated state. We show that the rapid de-differentiation of spleen FDC that followed LTβR-blockade, coincided with a significant decrease in the expression of mmu-miR-100-5p, mmu-miR-138-5p and mmu-miR-2137. These microRNAs were shown to be expressed in the FDC-like cell line, FL-YB, and specific inhibition of mmu-miR-100-5p significantly enhanced expression of Il6, Ptgs1/2 and Tlr4 in this cell line. The expression of each of these genes by FDC plays an important role in regulating GC size and promoting high-affinity antibody responses, suggesting that mmu-miR-100-5p may help regulate their expression during GC reactions.
Project description:The lymphotoxin system (LT) regulates interactions between lymphocytes and stromal cells to maintain lymphoid microenvironmental homeostasis. Soluble LT beta-receptor-Ig (LT?RIg) blocks lymphocyte LT?1?2-stromal cell LT?R signaling. In a murine cardiac allograft model, LTbRIg treatment reversed the tolerance induced by anti-CD40L antibody leading to graft inflammation and fibrosis. LT?RIg treatment decreased PD-L1 expression by blood endothelial cells, and decreased VCAM-1 while increasing CXCL1, CXCL2, CXCL12, CCL5, CCL21 and IL-6 expression in fibroblastic reticular cells. In secondary lymphoid organs these effects caused T- and B cell zone disruption, loss of CD35(+) follicular dendritic cells and abnormal recruitment of CD11b(+) Ly6G(+) neutrophils. These disruptions correlated with increased numbers of CD8(+) T cells and CD11b(+) Ly6G(+) neutrophils, and decreased numbers of CD4(+) T cells and Foxp3(+) regulatory T cells in the grafts. Depleting neutrophils or blocking neutrophil-attracting chemokines restored normal histology in lymph node, spleen and grafts. Taken together, LT?RIg treatment altered stromal subset, particularly fibroblastic reticular cell, production of cytokines and chemokines, resulting in changes in neutrophil recruitment in spleen, lymph node and grafts, and inflammation and fibrosis associated with decreased Foxp3(+) regulatory T cells and increased CD8(+) T cell infiltration of grafts.
Project description:To study the effect of LTbR induction on spleen and duodenum transcriptome, we performed RNA sequencing of the spleen and intestine after Intravenous LTbR agonist AC H6 or isotype treatment. We analyzed differential gene expression.