Rescue of KRAS suppression in HCT116 colon cancer cell line
Ontology highlight
ABSTRACT: Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling. We used microarrays to compare gene expression in HCT116 cells in which we suppressed KRAS expression doxycycline-inducible shRNA targeting KRAS compared to cells treated with media alone (no shKRAS induced). We express KRAS, LacZ, and YAP1 in each condition to identify genes transcriptionally involved in the rescue of KRAS suppression.
ORGANISM(S): Homo sapiens
PROVIDER: GSE55942 | GEO | 2014/07/22
SECONDARY ACCESSION(S): PRJNA241384
REPOSITORIES: GEO
ACCESS DATA