Project description:RORγt is a transcription factor required for T helper 17 (Th17) cell development. We identified three RORγt-specific inhibitors that suppress Th17 cell responses including Th17 cell-mediated autoimmune disease. We systemically characterized RORγt binding data in the presence and absence of drug with corresponding whole-transcriptome sequencing for wild-type and RORγt-deficient cells. RORγt is central in a densely interconnected regulatory network, acting both as a direct activator of genes important for Th17 cell differentiation and as a direct repressor of genes from other T-cell lineages. The three inhibitors identified here reversed both of these modes of action, but to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target-loci, the two more potent inhibitors affected transcription predominantly without removing DNA-binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity. DNA binding of RORγt in WT Th17 cells and under chemical perturbations of RORγt; Additional data is included for epitope-tagged exogenous RORγt in EL4 cells (a murine lymphoma cell line)
Project description:RORγt is a transcription factor required for T helper 17 (Th17) cell development. We identified three RORγt-specific inhibitors that suppress Th17 cell responses including Th17 cell-mediated autoimmune disease. We systemically characterized RORγt binding data in the presence and absence of drug with corresponding whole-transcriptome sequencing for wild-type and RORγt-deficient cells. RORγt is central in a densely interconnected regulatory network, acting both as a direct activator of genes important for Th17 cell differentiation and as a direct repressor of genes from other T-cell lineages. The three inhibitors identified here reversed both of these modes of action, but to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target-loci, the two more potent inhibitors affected transcription predominantly without removing DNA-binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity. Transcriptional profiling of Th17 cells under chemical perturbations of RORγt, DMSO, and knockout of RORγt. It includes repeats for all the data in GSE56018, plus one additional condition.
Project description:RORγt is a transcription factor required for T helper 17 (Th17) cell development. We identified three RORγt-specific inhibitors that suppress Th17 cell responses including Th17 cell-mediated autoimmune disease. We systemically characterized RORγt binding data in the presence and absence of drug with corresponding whole-transcriptome sequencing for wild-type and RORγt-deficient cells. RORγt is central in a densely interconnected regulatory network, acting both as a direct activator of genes important for Th17 cell differentiation and as a direct repressor of genes from other T-cell lineages. The three inhibitors identified here reversed both of these modes of action, but to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target-loci, the two more potent inhibitors affected transcription predominantly without removing DNA-binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.
Project description:RORγt is a transcription factor required for T helper 17 (Th17) cell development. We identified three RORγt-specific inhibitors that suppress Th17 cell responses including Th17 cell-mediated autoimmune disease. We systemically characterized RORγt binding data in the presence and absence of drug with corresponding whole-transcriptome sequencing for wild-type and RORγt-deficient cells. RORγt is central in a densely interconnected regulatory network, acting both as a direct activator of genes important for Th17 cell differentiation and as a direct repressor of genes from other T-cell lineages. The three inhibitors identified here reversed both of these modes of action, but to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target-loci, the two more potent inhibitors affected transcription predominantly without removing DNA-binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.
Project description:RORγt is a transcription factor required for T helper 17 (Th17) cell development. We identified three RORγt-specific inhibitors that suppress Th17 cell responses including Th17 cell-mediated autoimmune disease. We systemically characterized RORγt binding data in the presence and absence of drug with corresponding whole-transcriptome sequencing for wild-type and RORγt-deficient cells. RORγt is central in a densely interconnected regulatory network, acting both as a direct activator of genes important for Th17 cell differentiation and as a direct repressor of genes from other T-cell lineages. The three inhibitors identified here reversed both of these modes of action, but to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target-loci, the two more potent inhibitors affected transcription predominantly without removing DNA-binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.
Project description:The nuclear hormone receptor retinoic acid-related orphan receptor gamma t (RORγt) is a transcription factor (TF) specific to TH17 cells that produce interleukin (IL)-17 and have been implicated in a wide range of autoimmunity. Here, we developed a novel therapeutic strategy to modulate the functions of RORγt using cell-transducible form of transcription modulation domain of RORγt (tRORγt-TMD), which can be delivered effectively into the nucleus of cells and into the central nerve system (CNS). tRORγt-TMD specifically inhibited TH17-related cytokines induced by RORγt, thereby suppressing the differentiation of naïve T cells into TH17, but not into TH1, TH2, or Treg cells. tRORγt-TMD injected into experimental autoimmune encephalomyelitis (EAE) animal model can be delivered effectively in the splenic CD4(+) T cells and spinal cord-infiltrating CD4(+) T cells, and suppress the functions of TH17 cells. The clinical severity and incidence of EAE were ameliorated by tRORγt-TMD in preventive and therapeutic manner, and significant reduction of both infiltrating CD4(+) IL-17(+) T cells and inflammatory cells into the CNS was observed. As a result, the number of spinal cord demyelination was also reduced after tRORγt-TMD treatment. With the same proof of concept, tTbet-TMD specifically blocking TH1 differentiation improved the clinical incidence of rheumatoid arthritis (RA). Therefore, tRORγt-TMD and tTbet-TMD can be novel therapeutic reagents with the natural specificity for the treatment of inflammatory diseases associated with TH17 or TH1. This strategy can be applied to treat various diseases where a specific transcription factor has a key role in pathogenesis.
Project description:ROR?t is a transcription factor required for T helper 17 (Th17) cell development. We identified three ROR?t-specific inhibitors that suppress Th17 cell responses including Th17 cell-mediated autoimmune disease. We systemically characterized ROR?t binding data in the presence and absence of drug with corresponding whole-transcriptome sequencing for wild-type and ROR?t-deficient cells. ROR?t is central in a densely interconnected regulatory network, acting both as a direct activator of genes important for Th17 cell differentiation and as a direct repressor of genes from other T-cell lineages. The three inhibitors identified here reversed both of these modes of action, but to varying extents and through distinct mechanisms. Whereas one inhibitor displaced ROR?t from its target-loci, the two more potent inhibitors affected transcription predominantly without removing DNA-binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity. Transcriptional profiling of Th17 cells under chemical perturbations of ROR?t, DMSO, and knockout of ROR?t