Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration
Ontology highlight
ABSTRACT: In higher eukaryotes, the large numbers of nuclear-encoded tRNA genes partially ensure the robustness of cytoplasmic protein translation. Here we discover that a loss-of-function in n-Tr20, a member of the nuclear-encoded tRNA Arg UCU family that is expressed specifically in the central nervous systems leads to low but detectable levels of ribosome stalling. In the absence of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, ribosome stalling increases, leading to widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor, but also unmask the disease potential of mutations in nuclear-encoded tRNA genes. In this submission we provide ribosome footprinting data from the cerebella of four strains derived from the C57BL/6J strain with combinations of n-Tr20 and GTPBP2 mutations.
ORGANISM(S): Mus musculus
PROVIDER: GSE56127 | GEO | 2014/07/28
SECONDARY ACCESSION(S): PRJNA242520
REPOSITORIES: GEO
ACCESS DATA