Project description:RNASeq data on corals transplanted reciprocally into two different thermal microhabitats on Ofu Island Six individual corals transplanted into two habitats
Project description:Thermal history plays a role in the response of corals to subsequent heat stress. Prior heat stress can have a profound impact on later thermal tolerance, but the mechanism for this plasticity is not clear. The understanding of gene expression changes behind physiological acclimatization is critical in forecasts of coral health in impending climate change scenarios. Acropora millepora fragments were preconditioned to sublethal bleaching threshold stress for a period of 10 days; this prestress conferred bleaching resistance in subsequent thermal challenge, in which non-preconditioned coral bleached. Using microarrays, we analyze the transcriptomes of the coral host, comparing the bleaching-resistant preconditioned treatment to non-preconditioned and control treatments.
Project description:Thermal history plays a role in the response of corals to subsequent heat stress. Prior heat stress can have a profound impact on later thermal tolerance, but the mechanism for this plasticity is not clear. The understanding of gene expression changes behind physiological acclimatization is critical in forecasts of coral health in impending climate change scenarios. Acropora millepora fragments were preconditioned to sublethal bleaching threshold stress for a period of 10 days; this prestress conferred bleaching resistance in subsequent thermal challenge, in which non-preconditioned coral bleached. Using microarrays, we analyze the transcriptomes of the coral host, comparing the bleaching-resistant preconditioned treatment to non-preconditioned and control treatments. This experiment compared host gene expression of Acropora millepora across control, non-preconditioned, and preconditioned treatments. Fragments were sampled prior to preconditioning (Day 4), following 10 days of thermal preconditioning (Day 20), and after two (Day 23), four (Day 25), and eight days (Day 29) of 31M-BM-0C thermal challenge. The analysis implements 45 arrays, representing 5 sampling points of three treatments (n=3).
Project description:The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their algal endosymbionts (Symbiodinium spp.). Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of the cellular processes specific to coral-algal symbioses. In the present study, we utilized a cDNA microarray containing 2,059 genes of the Caribbean Elkhorn coral Acropora palmata to identify genes differentially expressed upon thermal stress. Fragments from four separate colonies were exposed to elevated temperature (3˚C increase) for two days, and samples were frozen for microarray analysis after 24 and 48 hours. Fragments experienced a 60% reduction in algal cell density after two days. 204 genes were differentially expressed in samples collected one day after thermal stress; in samples collected after two days, 104 genes. Annotations of the differentially expressed genes indicate a conserved cellular stress response in A. palmata involving: 1) growth arrest; 2) chaperone activity; 3) nucleic acid stabilization and repair; and 4) the removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and symbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are also compared to those from a previous coral microarray study of thermal stress in Montastraea faveolata.
Project description:Thirty-five Orbicella faveolata (scleractinian coral) proteins were labeled with iTRAQ technology and analyzed across five runs ("batches") of nano-liquid chromatography followed by mass spectrometry on a Q Exactive instrument. The samples represent a mix of corals that either were or were not reciprocally transplanted across shelves (inshore vs. offshore) in the Upper Florida Keys prior to a laboratory thermal challenge (tank) experiment. The goal of this project was to determine the molecular basis of thermotolerance in this common reef-builder as well as attempt to understand why inshore genotypes are typically more stress-tolerant than closely related offshore conspecifics.
Project description:Thermal-stress events are changing the composition of many coral reefs worldwide. Yet, determining the rates of coral recovery and their long-term responses to increasing sea-surface temperatures is challenging. To do so, we first estimated coral recovery rates following past disturbances on reefs in southern Japan and Western Australia. Recovery rates varied between regions, with the reefs in southern Japan showing more rapid recovery rates (intrinsic rate of increase, r = 0.38 year-1) than reefs in Western Australia (r = 0.17 year-1). Second, we input these recovery rates into a novel, nonlinear hybrid-stochastic-dynamical system to predict the responses of Indo-Pacific coral populations to complex inter-annual temperature cycles into the year 2100. The coral recovery rates were overlaid on background increases in global sea-surface temperatures, under three different climate-change scenarios. The models predicted rapid recovery at both localities with the infrequent and low-magnitude temperature anomalies expected under a conservative climate-change scenario, Representative Concentration Pathway (RCP) 4.5. With moderate increases in ocean temperatures (RCP 6.0) the coral populations showed a bimodal response, with model runs showing either recovery or collapse. Under a business-as-usual climate-change scenario (RCP 8.5), with frequent and intense temperature anomalies, coral recovery was unlikely.
Project description:INTRODUCTION: Rising seawater temperatures are threatening the persistence of coral reefs; where above critical thresholds, thermal stress results in a breakdown of the coral-dinoflagellate symbiosis and the loss of algal symbionts (coral bleaching). As symbiont-derived organic products typically form a major portion of host energy budgets, this has major implications for the fitness and persistence of symbiotic corals. </br> OBJECTIVES: We aimed to determine change in autotrophic carbon fate within individual compounds and downstream metabolic pathways in a coral symbiosis exposed to varying degrees of thermal stress and bleaching. </br> METHODS: We applied gas chromatography–mass spectrometry coupled to a stable isotope tracer (13C), to track change in autotrophic carbon fate, in symbiont and host individually, following exposure to elevated water temperature. </br> RESULTS: Thermal stress resulted in partner-specific changes in carbon fate, which progressed with heat stress duration. We detected modifications to carbohydrate and fatty acid metabolism, lipogenesis, and homeostatic responses to thermal, oxidative and osmotic stress. Despite pronounced photodamage, remaining in hospite symbionts continued to produce organic products de novo and translocate to the coral host. However as bleaching progressed, we observed minimal 13C enrichment of symbiont long-chain fatty acids, also reflected in 13C enrichment of host fatty acid pools. </br> CONCLUSION: These data have major implications for our understanding of coral symbiosis function during bleaching. Our findings suggest that during early stage bleaching, remaining symbionts continue to effectively translocate a variety of organic products to the host, however under prolonged thermal stress there is likely a reduction in the quality of these products.
Project description:Twelve inshore and six offshore colonies were reciprocally transplanted during 1 year (July 2017- July 2018) at Florida Keys (location). After this period samples were collected from the field and brought to the Experimental Reef Laboratory facilities (RSMAS, Miami) to be acclimated to 30C during 7 days in six aquaria. Three aquaria were keep under initial conditions for the duration of the experiment (30C) and three aquaria had the temperature increased everyday during 7 days to a final temperature of 32C. A total of 56 samples were collected for RNAseq after 6 days of the temperature treatment and stored at -80C.
Project description:Symbiodinium, the dinoflagellate photosymbiont of corals, is posited to become more susceptible to viral infections when heat-stressed. To investigate this hypothesis, we mined transcriptome data of a thermo-sensitive and a thermo-tolerant type C1 Symbiodinium population at ambient (27°C) and elevated (32°C) temperatures. We uncovered hundreds of transcripts from nucleocytoplasmic large double-stranded DNA viruses (NCLDVs) and the genome of a novel positive-sense single-stranded RNA virus (+ssRNAV). In the transcriptome of the thermo-sensitive population only, +ssRNAV transcripts had remarkable expression levels in the top 0.03% of all transcripts at 27°C, but at 32°C, expression levels of +ssRNAV transcripts decreased while expression levels of antiviral transcripts increased. In both transcriptomes, expression of NCLDV transcripts increased at 32°C, but thermal-induction of NCLDV transcripts involved in DNA manipulation was restricted to the thermo-sensitive population. Our findings reveal that viruses infecting Symbiodinium are affected by heat stress and may contribute to Symbiodinium thermal sensitivity.
Project description:Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land-use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO 2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem-based management and resilience thinking, before highlighting the need for climate change-ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human-assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change-ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long-term efficacy of local management actions is to be maintained and coral reefs are to survive.