ABSTRACT: In honey bees (Apis mellifera) the behaviorally and reproductively distinct queen and worker female castes derive from the same genome as a result of differential intake of royal jelly and are implemented in concert with DNA methylation. To determine if these very different diet-controlled phenotypes correlate with unique brain methylomes, we conducted a study to determine the methyl cytosine (mC) distribution in the brains of queens and workers at single-base-pair resolution using shotgun bisulfite sequencing technology. The whole-genome sequencing was validated by deep 454 sequencing of selected amplicons representing eight methylated genes. We found that nearly all mCs are located in CpG dinucleotides in the exons of 5,854 genes showing greater sequence conservation than non-methylated genes. Over 550 genes show significant methylation differences between queens and workers, revealing the intricate dynamics of methylation patterns. The distinctiveness of the differentially methylated genes is underscored by their intermediate CpG densities relative to drastically CpG-depleted methylated genes and to CpG-richer non-methylated genes. We find a strong correlation between methylation patterns and splicing sites including those that have the potential to generate alternative exons. We validate our genome-wide analyses by a detailed examination of two transcript variants encoded by one of the differentially methylated genes. The link between methylation and splicing is further supported by the differential methylation of genes belonging to the histone gene family. We propose that modulation of alternative splicing is one mechanism by which DNA methylation could be linked to gene regulation in the honey bee. Our study describes a level of molecular diversity previously unknown in honey bees that might be important for generating phenotypic flexibility not only during development but also in the adult post-mitotic brain.
Project description:In honey bees (Apis mellifera) the behaviorally and reproductively distinct queen and worker female castes derive from the same genome as a result of differential intake of royal jelly and are implemented in concert with DNA methylation. To determine if these very different diet-controlled phenotypes correlate with unique brain methylomes, we conducted a study to determine the methyl cytosine (mC) distribution in the brains of queens and workers at single-base-pair resolution using shotgun bisulfite sequencing technology. The whole-genome sequencing was validated by deep 454 sequencing of selected amplicons representing eight methylated genes. We found that nearly all mCs are located in CpG dinucleotides in the exons of 5,854 genes showing greater sequence conservation than non-methylated genes. Over 550 genes show significant methylation differences between queens and workers, revealing the intricate dynamics of methylation patterns. The distinctiveness of the differentially methylated genes is underscored by their intermediate CpG densities relative to drastically CpG-depleted methylated genes and to CpG-richer non-methylated genes. We find a strong correlation between methylation patterns and splicing sites including those that have the potential to generate alternative exons. We validate our genome-wide analyses by a detailed examination of two transcript variants encoded by one of the differentially methylated genes. The link between methylation and splicing is further supported by the differential methylation of genes belonging to the histone gene family. We propose that modulation of alternative splicing is one mechanism by which DNA methylation could be linked to gene regulation in the honey bee. Our study describes a level of molecular diversity previously unknown in honey bees that might be important for generating phenotypic flexibility not only during development but also in the adult post-mitotic brain. This study looked at the DNA methylation levels of queen and worker honeybees
Project description:We used microarrays to monitor expression patterns of several thousand genes in the brains of same-aged (10 day old) virgin queens, sterile workers, and reproductive workers in honey bees (Apis mellifera).
Project description:Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections. Examination of epigenomic and transcriptomic antiviral responses to Israeli Acute Paralysis Virus in honey bees
Project description:Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.
Project description:Honey bee drones, queens and workers have vastly different phenotypes. Here we profile the the expression level of mRNAs and microRNAs of honeybee, drones, queens and workers at the L5 larval stage (91 hours +/- 1).
Project description:Responses to social cues, such as pheromones, can be modified by genotype, physiology, or environmental context. Honey bee queens produce a pheromone (queen mandibular pheromone; QMP) which regulates many aspects of worker bee behavior and physiology. Forager honey bees are less responsive to QMP than young nurse bees engaged in brood care, suggesting that physiological changes associated with behavioral maturation may modulate response to this pheromone. Since cGMP is a major regulator of behavioral maturation in honey bee workers, we examined its role in modulating worker responses to QMP. Treatment with a cGMP analog, 8-Br-cGMP, resulted in significant reductions in both behavioral and physiological responses to QMP in young caged workers. Treatment significantly reduced attraction to QMP (the retinue response) and inhibited the QMP-mediated increase in vitellogenin levels in the fat bodies of worker bees. Genome-wide analysis of brain gene expression patterns demonstrated that cGMP has a larger effect on expression levels than QMP, and that QMP has specific effects in the presence of cGMP, suggesting that some responses to QMP may be dependent on an individual beesM-^R physiological state. Several functional gene categories were significantly differentially expressed, including genes involved in regulating GTPase activity, phototransduction, immunity, and carboxylic acid transmembrane transporter activity. Overall, our data suggest that cGMP-mediated processes play a large role in modulating responses to queen pheromone in honey bees, at the behavioral, physiological and molecular levels.
Project description:In honey bees (Apis mellifera), the reproductive queen produces a pheromonal signal that regulates many aspects of worker behavior and physiology and is critical for maintaining colony organization. Queen mandibular pheromone (QMP) inhibits worker reproduction, attracts workers from a short distance (retinue response), inhibits the rearing of new queens, modulates age-related division of labor and globally alters brain gene expression in worker bees. Interestingly, substantial variation in worker retinue responses to QMP has been found between colonies, but the molecular and physiological bases for variation in individual responses to the queen have not been characterized. Here, we demonstrate that individual retinue response is negatively correlated with traits associated with reproductive potential. Workers with low response to QMP have more ovarioles and higher levels of vitellogenin transcripts than workers with a high response to QMP, suggesting that workers with greater reproductive potential may be attempting to escape queen control. Retinue response appears to be associated with a suite of behavioral and physiological traits that may be pleiotropically linked. However, while these phenotypes are all correlated at the organismal level, the underlying brain expression patterns and gene networks associated with each trait are independent, suggesting that these phenotypes are uncoupled at the molecular level in adult bees. These studies provide insights into the ultimate and proximate causes of natural variation in pheromone response in honey bees.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:Honey bee drones, queens and workers have vastly different phenotypes. Here we profile the the expression level of mRNAs and microRNAs of honeybee, drones, queens and workers at the L5 larval stage (91 hours +/- 1). For both mRNA and miRNA, we analyse five replicates for drones, queens and workers (15 replicates for mRNA and 15 for miRNA).
Project description:Understanding the biological mechanisms underlying extreme lifespan variation within species remains a fundamental challenge in aging research. Here, we investigated the role of gut microbiota and age in honey bee (Apis mellifera) queens combining metagenomics and transcriptomics. Analysis of 40 queen hindguts revealed that Commensalibacter melissae (Alpha 2.1) relative abundance was significantly higher in young queens compared to old queens. Using queens with the highest and lowest C. melissae relative abundance, RNA sequencing identified 1,451 differentially expressed genes associated with C. melissae abundance, twice the number associated with age alone (719 genes). Queens with high C. melissae abundance showed distinct transcriptional profiles related to stress response, protein homeostasis, and longevity-regulating pathways, particularly genes involved in oxidative stress response and cellular maintenance. Our analysis revealed complex relationships between age, C. melissae abundance, and gene expression patterns, suggesting that multiple interacting factors contribute to queen quality. These findings contribute to our understanding of host-microbe interactions in honey bee queens and highlight the intricate relationship between gut microbiota composition and host physiology in honey bees.