SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta
Ontology highlight
ABSTRACT: Aging is the predominant risk factor for neurodegenerative diseases. One key phenotype as brain ages is the aberrant innate immune response characterized by proinflammation. However, the molecular mechanisms underlying aging-associated proinflammation are poorly defined. Whether chronic inflammation plays a causal role in cognitive decline in aging and neurodegeneration has not been established. Here we established a mechanistic link between chronic inflammation and aging microglia, and demonstrated a causal role of aging microglia in neurodegenerative cognitive deficits. Expression of microglial SIRT1 reduces with the aging of microglia. Genetic reduction of microglial SIRT1 elevates IL-1β selectively, and exacerbates cognitive deficits in aging and in transgenic mouse models of frontotemporal dementia (FTD). Interestingly, the selective activation of IL-1β transcription by SIRT1 deficiency is likely mediated through hypomethylating the proximal promoter of IL-1β. Consistent with our findings in mice, selective hypomethylation of IL-1β at two CpG sites are found in normal aging humans and demented patients with tauopathy. Our findings reveal a novel epigenetic mechanism in aging microglia that contributes to cognitive deficits in neurodegenerative diseases.
ORGANISM(S): Mus musculus
PROVIDER: GSE56452 | GEO | 2014/10/01
SECONDARY ACCESSION(S): PRJNA243353
REPOSITORIES: GEO
ACCESS DATA