Project description:The correlation between DNA methylation and a subset of histone post-translational modifications (positive and negative) has hinted at an underlying regulatory crosstalk between histone marks and DNA methylation in patterning the human DNA methylome, an idea further supported by corresponding alterations to both histone marks and DNA methylation during malignant transformation. This study investigated the framework by which histone marks influence DNA methylation at a genome-wide level. Using RNAi in a pluripotent human embryonic carcinoma cell line we depleted essential components of the MLL/COMPASS, polycomb repressive complex 2 (PRC2), and PRC1 histone modifying complexes that establish, respectively, the post-translational modifications H3K4me3, H3K27me3, and H2AK119ub, and assayed the impact of the subsequent depletion of these marks on the DNA methylome. Absence of H2AK119ub resulted predominantly in hypomethylation across the genome. Depletion of H3K4me3 and, surprisingly, H3K27me3 caused CpG island hypermethylation at a subset of loci. Intriguingly, many promoters were co-regulated by all three histone marks, becoming hypermethylated with loss of H3K4me3 or H3K27me3 and hypomethylated with depletion of H2AK119ub, and many of these co-regulated loci were among those commonly targeted for aberrant hypermethylation in cancer. Taken together, our results elucidate novel roles for polycomb and MLL/COMPASS in regulating DNA methylation and define targets of this regulation.
Project description:The association of DNA CpG methylation (or its absence) with occupancy of histone post translational modifications has hinted at an underlying crosstalk between histone marks and DNA methylation in patterning the human methylome, an idea supported by corresponding alterations to both histone marks and DNA methylation during malignant transformation. This study investigated the framework by which histone marks influence DNA methylation. Using RNAi in a human pluripotent embryonic carcinoma cell line we depleted essential components of the histone modifying complexes that establish the posttranslational modifications H3K4me3, H3K27me3, and H2AK119ub, and we assayed the impact of the subsequent loss of these marks on the DNA methylome. Absence of H2AK119ub resulted predominantly in hypomethylation across the genome. Removal of H3K4me3 or, surprisingly, H3K27me3 caused CpG island hypermethylation at a subset of loci. Intriguingly, many promoters were co-regulated by all three histone marks, becoming hypermethylated with loss of H3K4me3 or H3K27me3 and becoming hypomethylated with depletion of H2AK119ub, and many of these co-regulated loci were among those that are commonly, aberrantly hypermethylated in cancer.
Project description:The association of DNA CpG methylation (or its absence) with occupancy of histone post translational modifications has hinted at an underlying crosstalk between histone marks and DNA methylation in patterning the human methylome, an idea supported by corresponding alterations to both histone marks and DNA methylation during malignant transformation. This study investigated the framework by which histone marks influence DNA methylation. Using RNAi in a human pluripotent embryonic carcinoma cell line we depleted essential components of the histone modifying complexes that establish the posttranslational modifications H3K4me3, H3K27me3, and H2AK119ub, and we assayed the impact of the subsequent loss of these marks on the DNA methylome. Absence of H2AK119ub resulted predominantly in hypomethylation across the genome. Removal of H3K4me3 or, surprisingly, H3K27me3 caused CpG island hypermethylation at a subset of loci. Intriguingly, many promoters were co-regulated by all three histone marks, becoming hypermethylated with loss of H3K4me3 or H3K27me3 and becoming hypomethylated with depletion of H2AK119ub, and many of these co-regulated loci were among those that are commonly, aberrantly hypermethylated in cancer.
Project description:Polycomb response elements (PREs) are specific DNA sequences that stably maintain the developmental pattern of gene expression. Drosophila PREs are well characterized, whereas the existence of PREs in mammals remains debated. Accumulating evidence supports a model in which CpG islands recruit Polycomb group (PcG) complexes; however, which subset of CGIs is selected to serve as PREs is unclear. Trithorax (Trx) positively regulates gene expression in Drosophila and co-occupies PREs to antagonize Polycomb-dependent silencing. Here we demonstrate that Trx-dependent H3K4 dimethylation (H3K4me2) marks Drosophila PREs and maintains the developmental expression pattern of nearby genes. Similarly, the mammalian Trx homolog, MLL1, deposits H3K4me2 at CpG-dense regions that could serve as PREs. In the absence of MLL1 and H3K4me2, H3K27me3 levels, a mark of Polycomb repressive complex 2 (PRC2), increase at these loci. By inhibiting PRC2-dependent H3K27me3 in the absence of MLL1, we can rescue expression of these loci, demonstrating a functional balance between MLL1 and PRC2 activities at these sites. Thus, our study provides rules for identifying cell-type-specific functional mammalian PREs within the human genome.